首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36976篇
  免费   592篇
  国内免费   579篇
测绘学   933篇
大气科学   3066篇
地球物理   7395篇
地质学   12195篇
海洋学   3358篇
天文学   8693篇
综合类   120篇
自然地理   2387篇
  2021年   198篇
  2020年   257篇
  2019年   255篇
  2018年   611篇
  2017年   563篇
  2016年   878篇
  2015年   619篇
  2014年   846篇
  2013年   1882篇
  2012年   1032篇
  2011年   1448篇
  2010年   1190篇
  2009年   1770篇
  2008年   1568篇
  2007年   1490篇
  2006年   1404篇
  2005年   1284篇
  2004年   1206篇
  2003年   1166篇
  2002年   1090篇
  2001年   975篇
  2000年   983篇
  1999年   917篇
  1998年   834篇
  1997年   841篇
  1996年   720篇
  1995年   645篇
  1994年   561篇
  1993年   514篇
  1992年   510篇
  1991年   480篇
  1990年   476篇
  1989年   418篇
  1988年   402篇
  1987年   449篇
  1986年   433篇
  1985年   522篇
  1984年   582篇
  1983年   558篇
  1982年   519篇
  1981年   462篇
  1980年   435篇
  1979年   397篇
  1978年   412篇
  1977年   358篇
  1976年   323篇
  1975年   336篇
  1974年   336篇
  1973年   338篇
  1972年   201篇
排序方式: 共有10000条查询结果,搜索用时 1 毫秒
121.
We present the new MAP3 algorithms to perform static precise point positioning (PPP) from multifrequency and multisystem GNSS observations. MAP3 represents a two-step strategy in which the least squares theory is applied twice to estimate smoothed pseudo-distances, initial phase ambiguities, and slant ionospheric delay first, and the absolute receiver position and its clock offset in a second adjustment. Unlike the classic PPP technique, in our new approach, the ionospheric-free linear combination is not used. The combination of signals from different satellite systems is accomplished by taking into account the receiver inter-system bias. MAP3 has been implemented in MATLAB and integrated within a complete PPP software developed on site and named PCube. We test the MAP3 performance numerically and contrast it with other external PPP programs. In general, MAP3 positioning accuracy with low-noise GPS dual-frequency observations is about 2.5 cm in 2-h observation periods, 1 cm in 10 h, and 7 mm after 1 day. This means an improvement in the accuracy in short observation periods of at least 7 mm with respect to the other PPP programs. The MAP3 convergence time is also analyzed and some results obtained from real triple-frequency GPS and GIOVE observations are presented.  相似文献   
122.
Results from processing FORMOSAT-3/COSMIC radio occultations (RO) with the new GPS L2C signal acquired both in phase locked loop (PLL) and open loop (OL) modes are presented. Analysis of L2P, L2C, and L1CA signals acquired in PLL mode shows that in the presence of strong ionospheric scintillation not only L2P tracking, but also L1CA tracking often fails, while L2C tracking is most stable. The use of L2C improves current RO processing in the neutral atmosphere mainly by increasing the number of processed occultations (due to significant reduction in the number of L2 tracking failures) and marginally by a reduction in noise in statistics. The latter is due to the combination of reduced L2C noise (compared to L2P) and increased L1CA noise in those occultations where L2P would have failed. This result suggests application of OL tracking for L1CA and L2C signals throughout an entire occultation to optimally acquire RO data. Two methods of concurrent processing of L1CA and L2C RO signals are considered. Based on testing of individual occultations, these methods allow: (1) reduction in uncertainty of bending angles retrieved by wave optics in the lower troposphere and (2) reduction in small-scale residual errors of the ionospheric correction in the stratosphere.  相似文献   
123.
We investigate daily and sub-daily non-tidal oceanic and atmospheric loading (NTOAL) in the Australian region and put an upper bound on potential site motion examining the effects of tropical cyclone Yasi that crossed the Australian coast in January/February 2011. The dynamic nature of the ocean is important, particularly for northern Australia where the long-term scatter due to daily and sub-daily oceanic changes increases by 20–55 % compared to that estimated using the inverted barometer (IB) assumption. Correcting the daily Global Positioning System (GPS) time series for NTOAL employing either a dynamic ocean model or the IB assumption leads to a reduction of up to 52 % in the weighted scatter of daily coordinate estimates. Differences between the approaches are obscured by seasonal variations in the GPS precision along the northern coast. Two compensating signals during the cyclone require modelling at high spatial and temporal resolution: uplift induced by the atmospheric depression, and subsidence induced by storm surge. The latter dominates ( \(>\) 135 %) the combined net effect that reaches a maximum of 14 mm, and 10 mm near the closest GPS site TOW2. Here, 96 % of the displacement is reached within 15 h due to the rapid transit of cyclones and the quasi-linear nature of the coastline. Consequently, estimating sub-daily NTOAL is necessary to properly account for such a signal that can be 3.5 times larger than its daily-averaged value. We were unable to detect the deformation signal in 2-hourly GPS processing and show that seasonal noise in the Austral summer dominates and precludes GPS detection of the cyclone-related subsidence.  相似文献   
124.
In order to understand the nature of the urban climate, predict the effects of urbanization, or attempt to ameliorate some of the negative hydroclimatic effects of urbanization, it is necessary to have a good understanding of the role and significance of the urban surface. This paper presents a methodology which uses GIS to represent the characteristics and morphology of the urban surface, which can be used to describe a site objectively, model fluxes, or ensure spatial consistency between measured and modelled data, all of which can vary through time. The methodology is illustrated with respect to Chicago, Illinois. Surface data collected at three spatial scales were used to construct a georeferenced database which was linked to an objective, dynamic accessing system. Spatial variability of surface cover, derived hydroclimatic attributes, and modelled fluxes associated with changes in the urban environment are used to illustrate potential applications of the approach.  相似文献   
125.
Abstract

Indo_Gangetic Plain (IGP) of India that stretched from the foothills of Himalayas near the Punjab State to the Gangetic delta in West Bengal State was known for highly fertile soil and favorable climatic condition for highest production of rice‐wheat. Appearance of soil salinity in large areas of IGP caused a major concern due to loss of productivity. The salt affected soils maps of India (NRSA 1997) showed vast areas of salt affected soils distributed along the Gangetic Plain covering the States of Haryana, Punjab, Uttar Pradesh, Bihar and West Bengal. In the analogue form, these maps contain voluminous data were difficult to handle without messing the whole dataset. An attempt was made to prepare a digitized database of salt affected soils to facilitate easy access, retrieval and map calculations required for reclamation and management of salt affected soil. The salt affected soils maps on 1:250, 000 scale were digitized for the States of Punjab, Haryana, Uttar Pradesh, Bihar and West Bengal using ILWIS. GIS. The Survey of India topomap was used for geo‐referencing and basemap preparation overlaying thematic layers for administrative and political boundaries, infrastructure, irrigation and drainage and settlements. The attribute data on physiography and the soil characteristics were stored in an attribute table and linked with the digitized polygons to prepare a relational database. Combining geo‐referenced (State) maps of Haryana, Punjab, Uttar Pradesh, Bihar and West Bengal using GIS, a composite map for Indo‐Gangetic plain was prepared. Four Agroclimatic regions (ACRs) and seventeen Agroclimatic zones (ACZs) were identified in the Indo‐Gangetic Plain (The Planning Commission of India) for planning and development of natural resources at regional level. The boundaries of ACZs and ACRs were delineated from the primary (master) database of IGP using ILWIS.GIS. The distribution of SAS polygons at regional and zonal level was delineated superimposing digitized boundaries of ACRs and ACZs over the master database of IGP. The state‐wise, region‐wise and zone‐wise extent of SAS was calculated. Soils were essentially saline at Lower‐ and Middle Gangetic Plain regions but highly variable and complex saline‐sodic in the Upper‐ and Trans‐Gangetic Plain regions. The area statistics showed that maximum SAS area occurred in ACR V (Upper Gangetic Plain) in Uttar Pradesh (UP) followed by ACR IV (Middle Gangetic Plain) in UP and Bihar, ACR III (Lower Gangetic Plain) in West Bengal and ACR VI (Trans‐Gangetic Plain) of Haryana and Punjab. Such database in digital format provides geo‐referenced, easy to access and retrievable, relational database comprising of thematic and attribute information of salt affected soils at state, regional and zonal level to facilitate overlay and map calculation of related data such as water quality, climatic, landform etc, useful for planning and decision making in reclamation and management of salt affected soils in IGP and other similar regions.  相似文献   
126.
Salt affected soils occupy significant areas in western and central India manifested by the arid and semiarid climate, sandy/clayey soil texture, absence of natural drainage, and inadequate infrastructure and irrigation development. These soils are productive following reclamation and appropriate management. The National Remote Sensing Agency, Hyderabad (India) published state-wise maps of salt affected soils in India on 1:250,000 scale using a legend that includes physiography, soil characteristics, and the aerial extent of the mapping units. In the analogue form, voluminous data contained in such maps were difficult to handle by users of varied backgrounds. An attempt was made to prepare a computerized database of salt affected soils for easy access, retrieval, and manipulation of spatial and attribute data useful for management of salt affected soils. The salt affected soils maps were prepared, for Rajasthan, Gujarat, Madhya Pradesh, and Maharashtra states, overlaying digitized layers of SAS polygons and the Survey of India basemap using the ILWIS (Integrated Land and Water Information System) software. GIS was used to prepare a composite (master) database of western and central India that showed the extent and distribution of salt affected soils. A relational database was prepared combining the digitized polygons with soil characteristics such as nature and degree of salinity (presence of higher concentration of neutral salts and neutral soil reaction), sodicity (presence of higher concentration of basic salts and alkaline reaction) and ground coverage. The regional and zonal databases of salt affected soils were prepared at a suitable scale overlaying agro-climatic regions agro-climatic zones. Spatial relation of salt affected soils with physiography, climate, geology, and agro-eco-sub-regions were evaluated employing map calculations in GIS. Saline soils were prevalent in Gujarat, and Rajasthan while sodic soils were dominant in Maharashtra and Madhya Pradesh. These were distributed primarily in the arid (B) plain of Rajasthan, alluvial (A) and coastal (D) plains of Gujarat, and peninsular plain (F) of Maharashtra and Madhya Pradesh. It occupied 2,596,942 ha (78%) in the western (Rajasthan and Gujarat) and 733,608 ha (22%) in the central (Madhya Pradesh and Maharashtra) regions. The SAS occupied 3.3 million ha in the western and central region constituting 50% of the total salt affected soils in India. The saline and sodic soils occupied 2,069,285 ha (62%) and 1,261,266 ha (38%), respectively.  相似文献   
127.
QuickBird satellite imagery acquired in June 2003 and September 2004 was evaluated for detecting the noxious weed spiny aster [Leucosyris spinosa (Benth.) Greene] on a south Texas, USA rangeland area. A subset of each of the satellite images representing a diversity of cover types was extracted and used as a study site. The satellite imagery had a spatial resolution of 2.8 m and contained 11-bit data. Unsupervised and supervised classification techniques were used to classify false colour composite (green, red, and near-infrared bands) images of the study site. Imagery acquired in June was superior to that obtained in September for distinguishing spiny aster infestations. This was attributed to differences in spiny aster phenology between the two dates. An unsupervised classification of the June image showed that spiny aster had producer's and user's accuracies of 90% and 93.1%, respectively, whereas a supervised classification of the June image had producer's and user's accuracies of 90% and 81.8%, respectively. These results indicate that high resolution satellite imagery coupled with image analysis techniques can be used successfully for detecting spiny aster infestations on rangelands.  相似文献   
128.
Remote classification of land-use/land-cover (LULC) types in Brazil's Cerrado ecoregion is necessary because knowledge of Cerrado LULC is incomplete, sources of inaccuracy are unknown, and high-resolution data are required for the validation of moderate-resolution LULC maps. The aim of this research is to discriminate between Cerrado and agriculture using high-resolution Landsat 7 ETM+ imagery for the western region of Bahia state in northeastern Brazil. The Maximum Likelihood Classification (MLC) and Spectral Angle Mapper (SAM) algorithms were applied to a ~3000 km2 subset, yielding comparable classification accuracies. The panchromatic band was reserved for validation. User's and producer's accuracies were highest for non-irrigated agriculture (~94%) but lower for Cerrado Lato Sensu (89%). Classification errors likely resulted from spatial and spectral characteristics of particular classes (e.g. riparian forest and burned) and overestimation of other classes (e.g. Eucalyptus and water). Manual misinterpretation of validation data may have also led to lower reported classification accuracies.  相似文献   
129.
In this article, we present a satellite-based approach to gather information about the threat to coral reefs worldwide. Three chosen reef stressors – development, gas flaring and heavily lit fishing boat activity – are analysed using nighttime lights data derived from the Defense Meteorological Satellite Program (DMSP) produced at the National Oceanic & Atmospheric Administration, National Geophysical Data Center (NOAA/NGDC). Nighttime lights represent a direct threat to coral reef ecosystems and are an excellent proxy measure for associated human-caused stressors. A lights proximity index (LPI) is calculated, measuring the distance of coral reef sites to each of the stressors and incorporating the stressor's intensity. Colourized maps visualize the results on a global scale. Area rankings clarify the effects of artificial night lighting on coral reefs on a regional scale. The results should be very useful for reef managers and for state administrations to implement coral reef conservation projects and for the scientific world to conduct further research.  相似文献   
130.
Abstract

Image mapping using data from visible and infrared sensors has, as a major drawback, the frequent cloud cover experienced in many countries. This is one of the main reasons why topographic maps at 1:100,000 scale and larger are often outdated. The results of a study which investigated the possibilities of fusing up‐to‐date spaceborne microwave data with existing images from optical sensors for topographic map updating at a scale of 1:100, 000 are presented in this paper. A key issue researched was the influence of geometric distortions and corrections of remote sensing data on the results of pixel based digital image fusion. After having terrain‐geocoded and radiometrically enhanced imagery from the Landsat, SPOT, ERS‐1 and JERS‐1 satellites, the data were fused applying a variety of colour transformation techniques as well as statistical or arithmetic methods. Initially, the image fusion was implemented using images covering a test site in the north of The Netherlands in order to calibrate specified combinations and techniques in a rather flat area. With the experience gained, the remote sensing data acquired over the research site were processed. The research test site is located in a typical Developing Country in the humid Tropics, on the mountainous south‐west coast of Sumatra in Indonesia. The results of the various applied techniques and image combinations were evaluated with reference to their capability to overcome the cloud cover problem. New combinations of techniques and images were developed as result of an optimisation process. The research produced two prototypes of annotated 1:100,000 scale image maps containing fused, cloud‐free optical/microwave imagery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号