首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71266篇
  免费   1090篇
  国内免费   876篇
测绘学   1753篇
大气科学   5384篇
地球物理   14120篇
地质学   24371篇
海洋学   6565篇
天文学   16227篇
综合类   186篇
自然地理   4626篇
  2021年   559篇
  2020年   633篇
  2019年   674篇
  2018年   1449篇
  2017年   1312篇
  2016年   1806篇
  2015年   1126篇
  2014年   1694篇
  2013年   3613篇
  2012年   1958篇
  2011年   2783篇
  2010年   2419篇
  2009年   3346篇
  2008年   2874篇
  2007年   2872篇
  2006年   2661篇
  2005年   2322篇
  2004年   2220篇
  2003年   2131篇
  2002年   2061篇
  2001年   1822篇
  2000年   1736篇
  1999年   1555篇
  1998年   1468篇
  1997年   1481篇
  1996年   1279篇
  1995年   1158篇
  1994年   1067篇
  1993年   983篇
  1992年   943篇
  1991年   902篇
  1990年   900篇
  1989年   844篇
  1988年   815篇
  1987年   910篇
  1986年   851篇
  1985年   1032篇
  1984年   1160篇
  1983年   1064篇
  1982年   982篇
  1981年   960篇
  1980年   818篇
  1979年   801篇
  1978年   777篇
  1977年   732篇
  1976年   648篇
  1975年   669篇
  1974年   651篇
  1973年   670篇
  1972年   398篇
排序方式: 共有10000条查询结果,搜索用时 14 毫秒
961.
The annual fluxes of artificial radionuclides (238Pu,239+240Pu,241Am,137Cs,90Sr and3H) from the atmosphere to the Ross Ice Shelf in Antarctica were determined from measurements in strata dated by210Pb. Recognizable sources include the U.S. tests (Mike-Ivy and Castle Hill) in the early 1950s, the U.S.S.R. tests of the early 1960s, the SNAP-9A burnup of 1964 and the French and Chinese tests in the late 1960s and 1970s. There are several problems still awaiting resolution: the differences in atmospheric chemistries of fission products and of transuranics produced in weapons tests and the anomalous fluxes of238Pu to the ice shelf which do not appear to reflect a one-year stratospheric residence. There is no evidence for a smearing of the fallout record as a consequence of diffusion of these radionuclides in the glacial column.  相似文献   
962.
The incidence of major storm surges in the last decade have dramatically emphasized the immense destructive capabilities of extreme water level events, particularly when driven by severe tropical cyclones. Given this risk, it is vitally important that the exceedance probabilities of extreme water levels are accurately evaluated to inform risk-based flood and erosion management, engineering and for future land-use planning and to ensure the risk of catastrophic structural failures due to under-design or expensive wastes due to over-design are minimised. Australia has a long history of coastal flooding from tropical cyclones. Using a novel integration of two modeling techniques, this paper provides the first estimates of present day extreme water level exceedance probabilities around the whole coastline of Australia, and the first estimates that combine the influence of astronomical tides, storm surges generated by both extra-tropical and tropical cyclones, and seasonal and inter-annual variations in mean sea level. Initially, an analysis of tide gauge records has been used to assess the characteristics of tropical cyclone-induced surges around Australia. However, given the dearth (temporal and spatial) of information around much of the coastline, and therefore the inability of these gauge records to adequately describe the regional climatology, an observationally based stochastic tropical cyclone model has been developed to synthetically extend the tropical cyclone record to 10,000 years. Wind and pressure fields derived for these synthetically generated events have then been used to drive a hydrodynamic model of the Australian continental shelf region with annual maximum water levels extracted to estimate exceedance probabilities around the coastline. To validate this methodology, selected historic storm surge events have been simulated and resultant storm surges compared with gauge records. Tropical cyclone induced exceedance probabilities have been combined with estimates derived from a 61-year water level hindcast described in a companion paper to give a single estimate of present day extreme water level probabilities around the whole coastline of Australia. Results of this work are freely available to coastal engineers, managers and researchers via a web-based tool (www.sealevelrise.info). The described methodology could be applied to other regions of the world, like the US east coast, that are subject to both extra-tropical and tropical cyclones.  相似文献   
963.
Diffusion profiles in minerals are increasingly used to determine the duration of geological events. For this purpose, the distinction between growth and diffusion zoning is critical; it requires the understanding of complex features associated with multicomponent diffusion. Seed-overgrowth interdiffusion experiments carried out in the range 1,050–1,250°C at 1.3 GPa have been designed to quantify and better understand Fe–Mg–Ca interdiffusion in garnet. Some of the diffusion profiles measured by analytical transmission electron microscope show characteristic features of multicomponent diffusion such as uphill diffusion, chemical solitary waves, zero-flux planes and complex diffusion paths. We implemented three different methods to calculate the interdiffusion coefficients of the D matrix from the experimental penetration curves and determined that with Ca as the dependent component, the crossed coefficients of the D matrix are negative. Experiments and numerical simulations indicate that: (1) uphill diffusion in garnet can be observed indifferently on the three components Fe, Mg and Ca, (2) it takes the form of complementary depletion/repletion waves and (3) chemical waves occur preferentially on initially flat concentration profiles. Derived D matrices are used to simulate the fate of chemical waves in time, in finite crystals. These examples show that the flow of atoms in multicomponent systems is not necessarily unidirectional for all components; it can change both in space along the diffusion profile and in time. Moving zero-flux planes in finite crystals are transitory features that allow flux reversals of atoms in the diffusion zone. Interdiffusion coefficients of the D matrices are also analyzed in terms of eigenvalues and eigenvectors. This analysis and the experimental results show that depending on the composition of the diffusion couple, (1) the shape of chemical waves and diffusion paths changes; (2) the width of the diffusion zone for each component may or may not be identical; and (3) the width of diffusion calculated at a given D and duration may greatly vary. D matrices were retrieved from thirteen sets of diffusion profiles. Data were cast in Arrhenius relations. Linear regressions of the data yield activation energies equal to 368, 148, 394, 152 kJ mol−1 at 1 bar and frequency factors Do equal to 2.37 × 10−6, −4.46 × 10−16, −1.31 × 10−5, 9.85 × 10−15 m2 s−1 for [(D)\tilde]FeFeCa \tilde{D}_{FeFe}^{Ca} , [(D)\tilde]FeMgCa \tilde{D}_{FeMg}^{Ca} , [(D)\tilde]MgFeCa \tilde{D}_{MgFe}^{Ca} , [(D)\tilde]MgMgCa \tilde{D}_{MgMg}^{Ca} , respectively. These values can be used to calculate interdiffusion coefficients in Fe–Mg–Ca garnets and determine the duration of geological events in high temperature metamorphic or magmatic garnets.  相似文献   
964.
The results of studying the structure and mineral composition of the Upper Holocene bottom sediments of Lake Onega are presented. It is established that there are two types of columns of bottom sediments, for which stratification of layers and formation of Fe–Mn crusts are determined by the diagenesis processes occurring under physicochemical conditions of sediment accumulation according to two scenarios. The distribution spectra of rare-earth elements (REEs) are different in the indicated types of columns, which is apparently attributed to the differences in the oxidation–reduction conditions at the water–sediment interface during the formation of REEs and possibly to the influence of hydrothermal processes.  相似文献   
965.
In this article, we present a multi-wavelength and multi-instrument investigation of a halo coronal mass ejection (CME) from active region NOAA 12371 on 21 June 2015 that led to a major geomagnetic storm of minimum \(\mathrm{Dst} = -204\) nT. The observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory in the hot EUV channel of 94 Å confirm the CME to be associated with a coronal sigmoid that displayed an intense emission (\(T \sim6\) MK) from its core before the onset of the eruption. Multi-wavelength observations of the source active region suggest tether-cutting reconnection to be the primary triggering mechanism of the flux rope eruption. Interestingly, the flux rope eruption exhibited a two-phase evolution during which the “standard” large-scale flare reconnection process originated two composite M-class flares. The eruption of the flux rope is followed by the coronagraphic observation of a fast, halo CME with linear projected speed of 1366 km?s?1. The dynamic radio spectrum in the decameter-hectometer frequency range reveals multiple continuum-like enhancements in type II radio emission which imply the interaction of the CME with other preceding slow speed CMEs in the corona within \(\approx10\)?–?\(90~\mbox{R} _{\odot}\). The scenario of CME–CME interaction in the corona and interplanetary medium is further confirmed by the height–time plots of the CMEs occurring during 19?–?21 June. In situ measurements of solar wind magnetic field and plasma parameters at 1 AU exhibit two distinct magnetic clouds, separated by a magnetic hole. Synthesis of near-Sun observations, interplanetary radio emissions, and in situ measurements at 1 AU reveal complex processes of CME–CME interactions right from the source active region to the corona and interplanetary medium that have played a crucial role towards the large enhancement of the geoeffectiveness of the halo CME on 21 June 2015.  相似文献   
966.
Two core sediment samples; one from inner part (ManI) and the other closer to the mouth (ManII); were collected from the intertidal regions of Manori, a tidally influenced creek near Mumbai, India. Both the cores were subjected to various geochemical analyses to determine parameters such as pH, sediment components, total organic carbon, total nitrogen, total phosphorus and selected metals viz., Fe, Mn, Cu, Pb, Co, Ni, Zn, Cr, Al, Ca and V. Analysis of 210Pb activity was employed to assess the sediment deposition trend of the area. The data was further processed using factor and cluster analyses. The results indicate that the sediments from site ManI, had finer sediment composition, higher porosity, organic matter and metal contents but exhibited an erratic decline in 210Pb activity downcore. Also ManI showed higher C:N ratio and enrichment factor values as compared to site ManII. The inner area (ManI) probably received a greater input of organic matter from the erosion of terrestrial matter as well as domestic and industrial discharge. Sediments from site ManII had typical marine organic matter composition (lower C:N ratio). The concentration of metals at this site was also low indicating the contents were getting diluted by freshwater and seawater mixing.  相似文献   
967.
The spatial distribution of trace gases exhibit large spatial heterogeneity over the Indian region with an elevated pollution loading over densely populated Gangetic Plains (IGP). The contending role and importance of anthropogenic emissions and meteorology in deciding the trace gases level and distribution over Indian region, however, is poorly investigated. In this paper, we use an online regional chemistry transport model (WRF/Chem) to simulate the spatial distribution of trace gases over Indian region during one representative month of only three meteorological seasons namely winter, spring/summer and monsoon. The base simulation, using anthropogenic emissions from SEAC4RS inventory, is used to simulate the general meteorological conditions and the realistic spatial distribution of trace gases. A sensitivity simulation is conducted after removing the spatial heterogeneity in the anthropogenic emissions, i.e., with spatially uniform emissions to decouple the role of anthropogenic emissions and meteorology and their role in controlling the distribution of trace gases over India. The concentration levels of Ozone, CO, SO2 and NO2 were found to be lower over IGP when the emissions are uniform over India. A comparison of the base run with the sensitivity run highlights that meteorology plays a dominant role in controlling the spatial distribution of relatively longer-lived species like CO and secondary species like Ozone while short-lived species like NOX and SO2 are predominantly controlled by the spatial variability in anthropogenic emissions over the Indian region.  相似文献   
968.
Subject Index     

Subject Index

Subject Index  相似文献   
969.
During the AIDJEX Main Experiment, April 1975 through May 1976, a comprehensive microwave sensing program was performed on the sea ice of the Beaufort Sea. Surface and aircraft measurements were obtained during all seasons using a wide variety of active and passive microwave sensors. The surface program obtained passive microwave measurements of various ice types using four antennas mounted on a tracked vehicle. In three test regions, each with an area of approximately 1.5 × 104 m2, detailed ice crystallographic, dielectric properties, and brightness temperatures of first-year, multiyear, and first-year/multiyear mixtures were measured. A NASA aircraft obtained passive microwave measurements of the entire area of the AIDJEX manned station array (triangle) during each of 18 flights. This verified the earlier reported ability to distinguish first-year and multiyear ice types and concentration and gave new information on ways to observe ice mixtures and thin ice types. The active microwave measurements from aircraft included those from an X- and L-band radar and from a scatterometer. The former is used to study a wide variety of ice features and to estimate deformations, while both are equally usable to observe ice types. With the present data, only the scatterometer can be used to distinguish positively multiyear from first-year and various types of thin ice. This is best done using coupled active and passive microwave sensing.We dedicate this work to our beloved friend William NordbergHe pioneered in microwave ice observations, and his brilliance and enthusiasm inspired all of us.  相似文献   
970.
Hydrological connectivity describes the physical coupling (linkages) of different elements within a landscape regarding (sub‐) surface flows. A firm understanding of hydrological connectivity is important for catchment management applications, for example, habitat and species protection, and for flood resistance and resilience improvement. Thinking about (geomorphological) systems as networks can lead to new insights, which has also been recognized within the scientific community, seeing the recent increase in the use of network (graph) theory within the geosciences. Network theory supports the analysis and understanding of complex systems by providing data structures for modelling objects and their linkages, and a versatile toolbox to quantitatively appraise network structure and properties. The objective of this study was to characterize and quantify overland flow connectivity dynamics on hillslopes in a humid sub‐Mediterranean environment by using a combination of high‐resolution digital‐terrain models, overland flow sensors and a network approach. Results showed that there are significant differences between overland flow connectivity on agricultural areas and semi‐natural shrubs areas. Significant positive correlations between connectivity and precipitation characteristics were found. Significant negative correlations between connectivity and soil moisture were found, most likely because of soil water repellency and/or soil surface crusting. The combination of structural networks and dynamic networks for determining potential connectivity and actual connectivity proved a powerful tool for analysing overland flow connectivity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号