全文获取类型
收费全文 | 36976篇 |
免费 | 592篇 |
国内免费 | 579篇 |
专业分类
测绘学 | 933篇 |
大气科学 | 3066篇 |
地球物理 | 7395篇 |
地质学 | 12195篇 |
海洋学 | 3358篇 |
天文学 | 8693篇 |
综合类 | 120篇 |
自然地理 | 2387篇 |
出版年
2021年 | 198篇 |
2020年 | 257篇 |
2019年 | 255篇 |
2018年 | 611篇 |
2017年 | 563篇 |
2016年 | 878篇 |
2015年 | 619篇 |
2014年 | 846篇 |
2013年 | 1882篇 |
2012年 | 1032篇 |
2011年 | 1448篇 |
2010年 | 1190篇 |
2009年 | 1770篇 |
2008年 | 1568篇 |
2007年 | 1490篇 |
2006年 | 1404篇 |
2005年 | 1284篇 |
2004年 | 1206篇 |
2003年 | 1166篇 |
2002年 | 1090篇 |
2001年 | 975篇 |
2000年 | 983篇 |
1999年 | 917篇 |
1998年 | 834篇 |
1997年 | 841篇 |
1996年 | 720篇 |
1995年 | 645篇 |
1994年 | 561篇 |
1993年 | 514篇 |
1992年 | 510篇 |
1991年 | 480篇 |
1990年 | 476篇 |
1989年 | 418篇 |
1988年 | 402篇 |
1987年 | 449篇 |
1986年 | 433篇 |
1985年 | 522篇 |
1984年 | 582篇 |
1983年 | 558篇 |
1982年 | 519篇 |
1981年 | 462篇 |
1980年 | 435篇 |
1979年 | 397篇 |
1978年 | 412篇 |
1977年 | 358篇 |
1976年 | 323篇 |
1975年 | 336篇 |
1974年 | 336篇 |
1973年 | 338篇 |
1972年 | 201篇 |
排序方式: 共有10000条查询结果,搜索用时 14 毫秒
111.
112.
A 29-year time-series of four-times-daily atmospheric effective angular momentum (EAM) estimates is used to study the atmospheric
influence on nutation. The most important atmospheric contributions are found for the prograde annual (77 μas), retrograde
annual (53 as), prograde semiannual (45 as), and for the constant offset of the pole (δψsinɛ0=−86 as, δɛ=77 as). Among them only the prograde semiannual component is driven mostly by the wind term of the EAM function,
while in all other cases the pressure term is dominant. These are nonnegligible quantities which should be taken into account
in the new theory of nutation. Comparison with the VLBI corrections to the IAU 1980 nutation model taking into account the
ocean tide contribution yields good agreement for the prograde annual and semiannual nutations. We also investigated time
variability of the atmospheric contribution to the nutation amplitudes by performing the sliding-window least-squares analysis
of both the atmospheric excitation and VLBI nutation data. Almost all detected variations of atmospheric origin can be attributed
to the pressure term, the biggest being the in-phase annual prograde component (about 30 as) and the retrograde one (as much
as 100200 as). These variations, if physical, limit the precision of classical modeling of nutation to the level of 0.1 mas.
Comparison with the VLBI data shows significant correlation for the retrograde annual nutation after 1989, while for the prograde
annual term there is a high correlation in shape but the size of the atmospherically driven variations is about three times
less than deduced from the VLBI data. This discrepancy in size can be attributed either to inaccuracy of the theoretical transfer
function or the frequency-dependent ocean response to the pressure variations. Our comparison also yields a considerably better
agreement with the VLBI nutation data when using the EAM function without the IB correction for ocean response, which indicates
that this correction is not adequate for nearly diurnal variations.
Received: 10 September 1997 / Accepted: 5 March 1998 相似文献
113.
A fast algorithm is proposed to integrate the trajectory of a low obiter perturbed by the earth's non-sphericity. The algorithm
uses a separation degree to define the low-degree and the high-degree acceleration components, the former computed rigorously,
and the latter interpolated from gridded accelerations. An FFT method is used to grid the accelerations. An optimal grid type
for the algorithm depends on the trajectory's permissible error, speed, and memory capacity. Using the non-spherical accelerations
computed from EGM96 to harmonic degree 360, orbit integrations were performed for a low orbiter at an altitude of 170 km.
For a separation degree of 50, the new algorithm, together with the predict-pseudo correct method, speeds up the integration
by 145 times compared to the conventional algorithm while keeping the errors in position and velocity below 10−4 m and 10−7 m/s for a 3-day arc.
Received: 28 July 1997 / Accepted: 1 April 1998 相似文献
114.
C. Kotsakis 《Journal of Geodesy》2012,86(9):755-774
The aim of this paper is to investigate the influence of the minimum constraints (MCs) on the reference frame parameters in a free-net solution. The non-estimable part of these parameters (which is not reduced by the available data) is analysed in terms of its stability under a numerical perturbation of the constrained datum functionals. In practice, such a perturbation can be ascribed either to hidden errors in the known coordinates/velocities that participate in the MCs or to a simple change of their a priori values due to a datum switch on a different fiducial dataset. In addition, a perturbation of this type may cause a nonlinear variation to the estimable part of the reference frame parameters, since it theoretically affects the adjusted observations that are implied by the network’s nonlinear observational model. The aforementioned effects have an impact on the quality of a terrestrial reference frame (TRF) that is established via a minimum-constrained adjustment, and our study shows that they are both controlled through a characteristic matrix which is inherently linked to the MC system (the so-called TRF stability matrix). The structure of this matrix depends on the network’s spatial configuration and the ‘geometry’ of the datum constraints, while its main role is the filtering of any MC-related errors into the least-squares adjustment results. A number of examples with different types of geodetic networks are also presented to demonstrate the theoretical findings of our study. 相似文献
115.
R. Raaj M. Ramalingam S. K. Ghosh U. C. Kothyari 《Journal of the Indian Society of Remote Sensing》2008,36(1):61-68
This article reports a preliminary work in which two site specific seasonal algorithms have been proposed for estimating the
suspended sediments concentration (SSC) from the digital numbers recorded on Indian Remote sensing Satellite, IRS-P4 Ocean
Colour Monitor (OCM) sensor. For estimation of SSC, the proposed algorithms utilize dark pixel deduction atmospheric correction
technique. The computations are performed with respect to north east monsoon phase situations of Palk Strait coastal stretch.
The algorithms performance was satisfactory during the north east monsoon period. Although the results obtained cannot be
generalized, we suggest that the authority of proposed algorithms can be extended to other seasons with the addition of more
temporal experimental validation data sets and with numeric constants adjusted to present existing conditions. (As this area
was severely affected by Tsunami, it may have dissimilar conditions at present). 相似文献
116.
A. Shamshad C.S. LeowA. Ramlah W.M.A. Wan HussinS.A. Mohd. Sanusi 《International Journal of Applied Earth Observation and Geoinformation》2008
The study evaluated the performance and suitability of AnnAGNPS model in assessing runoff, sediment loading and nutrient loading under Malaysian conditions. The watershed of River Kuala Tasik in Malaysia, a combination of two sub-watersheds, was selected as the area of study. The data for the year 2004 was used to calibrate the model and the data for the year 2005 was used for validation purposes. Several input parameters were computed using methods suggested by other researchers and studies carried out in Malaysia. The study shows that runoff was predicted well with an overall R2 value of 0.90 and E value of 0.70. Sediment loading was able to produce a moderate result of R2 = 0.66 and E = 0.49, nitrogen loading predictions were slightly better with R2 = 0.68 and E = 0.53, and phosphorus loading performance was slightly poor with an R2 = 0.63 and E = 0.33. The erosion map developed was in agreement with the erosion risk map produced by the Department of Agriculture, Malaysia. Rubber estates and urban areas were found to be the main contributors to soil erosion. The simulation results showed that AnnAGNPS has the potential to be used as a valuable tool for planning and management of watersheds under Malaysian conditions. 相似文献
117.
In this paper, we compare and contrast a Bayesian spatially varying coefficient process (SVCP) model with a geographically
weighted regression (GWR) model for the estimation of the potentially spatially varying regression effects of alcohol outlets
and illegal drug activity on violent crime in Houston, Texas. In addition, we focus on the inherent coefficient shrinkage
properties of the Bayesian SVCP model as a way to address increased coefficient variance that follows from collinearity in
GWR models. We outline the advantages of the Bayesian model in terms of reducing inflated coefficient variance, enhanced model
flexibility, and more formal measuring of model uncertainty for prediction. We find spatially varying effects for alcohol
outlets and drug violations, but the amount of variation depends on the type of model used. For the Bayesian model, this variation
is controllable through the amount of prior influence placed on the variance of the coefficients. For example, the spatial
pattern of coefficients is similar for the GWR and Bayesian models when a relatively large prior variance is used in the Bayesian
model.
相似文献
118.
J. Klokočník Ch. Reigber P. Schwintzer C. A. Wagner J. Kostelecký 《Journal of Geodesy》2002,76(4):189-198
The new GFZ/GRGS gravity field models GRIM5-S1 and GRIM5-C1, currently used as initial models for the CHAMP mission, have
been compared with other recent models (JGM 3, EGM 96) for radial orbit accuracy (by means of latitude lumped coefficients)
in computations on altimetry satellite orbits. The bases for accuracy judgements are multi-year averages of crossover sea
height differences from Geosat and ERS 1/2 missions. This radially sensitive data is fully independent of the data used to
develop these gravity models. There is good agreement between the observed differences in all of the world's oceans and projections
of the same errors from the scaled covariance matrix of their harmonic geopotential coefficients. It was found that the tentative
scale factor of five for the formal standard deviations of the harmonic coefficients of the new GRIM fields is justified,
i.e. the accuracy estimates, provided together with the GRIM geopotential coefficients, are realistic.
Received: 20 February 2001 / Accepted: 24 October 2001 相似文献
119.
C. Vigny J. Chéry T. Duquesnoy F. Jouanne J. Ammann M. Anzidei J.-P. Avouac F. Barlier R. Bayer P. Briole E. Calais F. Cotton F. Duquenne K. L. Feigl G. Ferhat M. Flouzat J.-F. Gamond A. Geiger A. Harmel M. Kasser M. Laplanche M. Le Pape J. Martinod G. Ménard B. Meyer J.-C. Ruegg J.-M. Scheubel O. Scotti G. Vidal 《Journal of Geodesy》2002,76(2):63-76
The Western Alps are among the best studied collisional belts with both detailed structural mapping and also crustal geophysical
investigations such as the ECORS and EGT seismic profile. By contrast, the present-day kinematics of the belt is still largely
unknown due to small relative motions and the insufficient accuracy of the triangulation data. As a consequence, several tectonic
problems still remain to be solved, such as the amount of N–S convergence in the Occidental Alps, the repartition of the deformation
between the Alpine tectonic units, and the relation between deformation and rotation across the Alpine arc. In order to address
these problems, the GPS ALPES group, made up of French, Swiss and Italian research organizations, has achieved the first large-scale
GPS surveys of the Western Alps. More than 60 sites were surveyed in 1993 and 1998 with a minimum observation of 3 days at
each site. GPS data processing has been done by three independent teams using different software. The different solutions
have horizontal repeatabilities (N–E) of 4–7 mm in 1993 and 2–3 mm in 1998 and compare at the 3–5-mm level in position and
2-mm/yr level in velocity. A comparison of 1993 and 1998 coordinates shows that residual velocities of the GPS marks are generally
smaller than 2 mm/yr, precluding a detailed tectonic interpretation of the differential motions. However, these data seem
to suggest that the N–S compression of the Western Alps is quite mild (less than 2 mm/yr) compared to the global convergence
between the African and Eurasian plate (6 mm/yr). This implies that the shortening must be accomodated elsewhere by the deformation
of the Maghrebids and/or by rotations of Mediterranean microplates. Also, E–W velocity components analysis supports the idea
that E–W extension exists, as already suggested by recent structural and seismotectonic data interpretation.
Received: 27 November 2000 / Accepted: 17 September 2001 相似文献
120.
C. J. Rodriguez-Solano U. Hugentobler P. Steigenberger M. Bloßfeld M. Fritsche 《Journal of Geodesy》2014,88(6):559-574
Systematic errors at harmonics of the GPS draconitic year have been found in diverse GPS-derived geodetic products like the geocenter $Z$ -component, station coordinates, $Y$ -pole rate and orbits (i.e. orbit overlaps). The GPS draconitic year is the repeat period of the GPS constellation w.r.t. the Sun which is about 351 days. Different error sources have been proposed which could generate these spurious signals at the draconitic harmonics. In this study, we focus on one of these error sources, namely the radiation pressure orbit modeling deficiencies. For this purpose, three GPS+GLONASS solutions of 8 years (2004–2011) were computed which differ only in the solar radiation pressure (SRP) and satellite attitude models. The models employed in the solutions are: (1) the CODE (5-parameter) radiation pressure model widely used within the International GNSS Service community, (2) the adjustable box-wing model for SRP impacting GPS (and GLONASS) satellites, and (3) the adjustable box-wing model upgraded to use non-nominal yaw attitude, specially for satellites in eclipse seasons. When comparing the first solution with the third one we achieved the following in the GNSS geodetic products. Orbits: the draconitic errors in the orbit overlaps are reduced for the GPS satellites in all the harmonics on average 46, 38 and 57 % for the radial, along-track and cross-track components, while for GLONASS satellites they are mainly reduced in the cross-track component by 39 %. Geocenter $Z$ -component: all the odd draconitic harmonics found when the CODE model is used show a very important reduction (almost disappearing with a 92 % average reduction) with the new radiation pressure models. Earth orientation parameters: the draconitic errors are reduced for the $X$ -pole rate and especially for the $Y$ -pole rate by 24 and 50 % respectively. Station coordinates: all the draconitic harmonics (except the 2nd harmonic in the North component) are reduced in the North, East and Height components, with average reductions of 41, 39 and 35 % respectively. This shows, that part of the draconitic errors currently found in GNSS geodetic products are definitely induced by the CODE radiation pressure orbit modeling deficiencies. 相似文献