首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   15篇
  国内免费   12篇
测绘学   9篇
大气科学   45篇
地球物理   57篇
地质学   49篇
海洋学   50篇
天文学   4篇
自然地理   2篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   5篇
  2019年   3篇
  2018年   17篇
  2017年   16篇
  2016年   12篇
  2015年   12篇
  2014年   8篇
  2013年   9篇
  2012年   15篇
  2011年   18篇
  2010年   17篇
  2009年   13篇
  2008年   4篇
  2007年   15篇
  2006年   9篇
  2005年   6篇
  2004年   3篇
  2003年   7篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1993年   1篇
  1991年   1篇
  1986年   1篇
  1979年   1篇
排序方式: 共有216条查询结果,搜索用时 859 毫秒
21.
Aerosol optical thickness (AOT) was retrieved from the Geostationary Ocean Color Imager (GOCI) on board the Communication, Ocean, and Meteorological Satellite (COMS) for the first time. AOT values were retrieved over the ocean at a spatial scale of 0.5 × 0.5 km2 by using the look-up table (LUT)-based separation technique. The radiative transfer model (RTM) was used for different models of atmosphere-ocean environmental conditions, taking into account the realistic variability of scattering and absorption. Ocean surface properties affected by whitecaps and pigment content were also taken into account. The results show that the radiance observed by the GOCI amounts to only 5% of the radiation that penetrated the ocean and, consequently, 95% of the radiation is scattered in the atmosphere or reflected at the ocean surface in the visible wavelengths longer than 0.6 ìm. Within these wavelengths, radiance variations at the top of atmosphere (TOA) due to pigment variations are within 10%, while the radiance variation due to wind speed is considerably higher. For verification of GOCI-retrieved AOTs, comparison between GOCI and ground-based sunphotometer measurement at Gosan, Korea (126.10°E, 33.23°N)) showed good correlation (r = 0.99). The GOCI observations obtained by using the proposed technique showed promising results for the daily monitoring of atmospheric aerosol loading as well as being useful for environmental supervisory authorities.  相似文献   
22.
The Common Land Model (CLM) is one of the most widely used land surface models (LSMs) due to the practicality of its simple parameterization scheme and its versatility in embracing a variety of field datasets. The improved assessment of land surface water and energy fluxes using CLM can be an alternative approach for understanding the complex land–atmosphere interactions in data‐limited regions. The understanding of water and energy cycles in a farmland is crucial because it is a dominant land feature in Korea and Asia. However, the applications of CLM to farmland in Korea are in paucity. The simulations of water and energy fluxes by CLM were conducted against those from the tower‐based measurements during the growing season of 2006 at the Haenam site (a farmland site) in Korea without optimization. According to the International Geosphere–Biosphere Programme (IGBP) land cover classification, a homogeneous cropland was selected initially for this study. Although the simulated soil moisture had a similar pattern to that of the observed, the former was relatively drier (at 0·1 m3 m?3) than the latter. The simulated net radiation showed good agreement with the observed, with a root mean squared error (RMSE) of 41 W m?2, whereas relatively large discrepancies between the simulation and observation were found in sensible (RMSE of 66 W m?2) and latent (RMSE of 60 W m?2) heat fluxes. On the basis of the sensitivity analysis, soil moisture was more receptive to land cover and soil texture parameterizations when compared to soil temperature and turbulent fluxes. Despite the uncertainty in the predictive capability of CLM employed without optimization, the initial performance of CLM suggests usefulness in a data‐limited heterogeneous farmland in Korea. Further studies are required to identify the controls on water and energy fluxes with an improved parameterization. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
23.
We investigated the ecological significance of alkaline phsophatase (APase) and alkaline phosphatase-hydrolyzable phosphorus (APHP) in the northern part of Gamak Bay, Korea. APase activity was detectable throughout the year, and dissolved inorganic phosphorus (DIP) concentration and APase activity are highly correlated and can be regarded as an indicator of DIP-limiting conditions. Also, a strong linear positive correlation between APase activity and Chl a concentration indicated that the major part of APase activity may have been induced by phytoplanktons. The APHP proportion in dissolved organic phosphorus (DOP) was above ca. 30% from winter to spring and below ca. 15% from summer to autumn due to freshwater discharge and uptake by phytoplankton. APHP may play an important role in species competition in coastal area such as northern part of Gamak Bay where DIP is limiting. Thus, APase induction by phytoplanktons may be ecologically significant, allowing dominance by these organisms under DIP-limiting conditions.  相似文献   
24.
Preventing the penetration of rainwater into a landfill site is the main purpose of the final cover in landfill sites. Conventional designs of landfill covers use geotextiles, such as geomembrane and geosynthetic clay liners, and clay liners to lower the permeability of the final cover of landfill sites. However, differential settlement and climatic effects in landfill sites instigate crack development or structural damage inside the final cover. This study therefore investigates the field applicability of a self-recovering sustainable liner (SRSL) as an alternative to the landfill final cover. The SRSL utilizes the precipitation reaction of two chemical materials to form precipitates that fill the pores and thereby lower the overall permeability of the liner. To examine the field applicability of the SRSL system, uniaxial compression tests and laboratory hydraulic conductivity tests were performed under various climatic effects such as wet/dry and freeze/thaw processes. Furthermore, field-scale hydraulic conductivity tests were performed with intentionally induced cracks to demonstrate the self-recovery performance for practical applications. Extensive laboratory and field test results confirmed the capability of the SRSL final cover system to fulfill the strength and hydraulic conductivity requirements, even in harsh field conditions.  相似文献   
25.
To better constrain sampling strategies for observing biologically sensitive parameters in ground water, we vigorously pumped for 120 h a lightly pumped well completed in a confined glacial aquifer while observing how various physical and chemical parameters evolve in the water produced. The parameters commonly monitored when sampling a well stabilized within about an hour, after 5 wellbore volumes were produced; these parameters include temperature, pH, dissolved oxygen, oxidation-reduction potential (Eh), and electrical conductivity. The concentrations of ferrous iron, sulfide, and sulfate and various biological or biologically sensitive parameters, including the concentrations of dissolved hydrogen and methane, direct cell counts, and the microbial community profile, in contrast, required more than 8 h or 36 well volumes to stabilize. We interpret this result to mean that the zone of influence of the wellbore on biologic processes in the aquifer extends beyond the commonly recognized zone where physical properties are affected. A second period of adjustment of these biologically sensitive parameters began after about 50 h of pumping, following displacement of 230 wellbore volumes, and continued to the end of the experiment. During this period, the cell density and the composition of the microbial community suspended in the water samples changed. This finding indicates that the microbial community in and near the wellbore changed in response to pumping and the changes affected aspects of the composition of water produced from the well. The study demonstrates the importance of allowing adequate pumping time when sampling ground water for the analysis of biologically sensitive parameters.  相似文献   
26.
The upflow anaerobic sludge blanket process followed by the biological aerated filter process was employed to improve the removal of color and recalcitrant compounds from real dyeing wastewater. The highest removal efficiency for color was observed in the anaerobic process, at 8-h hydraulic retention time, seeded with the sludge granule. In the subsequent aerobic process packed with the microbe-immobilized polyethylene glycol media, the removal efficiency for chemical oxygen demand increased significantly to 75 %, regardless of the empty bed contact time. The average influent non-biodegradable soluble chemical oxygen demand was 517 mg/L, and the average concentration in effluent from the anaerobic reactor was 363 mg/L, suggesting the removal of some recalcitrant matters together with the degradable ones. The average non-biodegradable soluble chemical oxygen demand in effluent from the aerobic reactor was 87, 93, and 118 mg/L, with the removal efficiency of 76, 74, and 67 %, at 24-, 12-, and 8-h empty bed contact time, respectively. The combined anaerobic sludge blanket and aerobic cell-entrapped process was effective to remove the refractory compounds from real dyeing wastewater as well as in reducing organic loading to meet the effluent discharge limits. This integrated process is considered an effective and economical treatment technology for dyeing wastewater.  相似文献   
27.
Discharge is an important factor in river design for water utilization, water control and hydraulic structures; therefore, an accurate estimation of the discharge is required. At present, a rating curve depicting the relationship between a stage and discharge is used to calculate the discharge from river systems. Although the rating curve has an advantage in that it can predict and use the discharge during the flood season in which the measurement is difficult, there is room for improvement as it does not reflect the hydraulic characteristics of rivers. Therefore, in this study, discharge was predicted using the convenient calculation method with empirical mediating variables of the Manning and Chezy equations which were proposed by the author’s previous research as a new methodology for estimating discharge in an open channel. This was proven, based on the data measured in a meandering open channel system in a lab at the Mississippi River in the US and at the Columbia Del Dique Canal, and an accuracy level at a coefficient of 0.8 was demonstrated. Thus, this method, which reflects the hydraulic characteristics and predicts the discharge in a simple manner, is expected to be convenient in practice.  相似文献   
28.
We present climate responses of Representative Concentration Pathways (RCPs) using the coupled climate model HadGEM2-AO for the Coupled Model Intercomparison Project phase 5 (CMIP5). The RCPs are selected as standard scenarios for the IPCC Fifth Assessment Report and these scenarios include time paths for emissions and concentrations of greenhouse gas and aerosols and land-use/land cover. The global average warming and precipitation increases for the last 20 years of the 21st century relative to the period 1986-2005 are +1.1°C/+2.1% for RCP2.6, +2.4°C/+4.0% for RCP4.5, +2.5°C/+3.3% for RCP6.0 and +4.1°C/+4.6% for RCP8.5, respectively. The climate response on RCP 2.6 scenario meets the UN Copenhagen Accord to limit global warming within two degrees at the end of 21st century, the mitigation effect is about 3°C between RCP2.6 and RCP8.5. The projected precipitation changes over the 21st century are expected to increase in tropical regions and at high latitudes, and decrease in subtropical regions associated with projected poleward expansions of the Hadley cell. Total soil moisture change is projected to decrease in northern hemisphere high latitudes and increase in central Africa and Asia whereas near-surface soil moisture tends to decrease in most areas according to the warming and evaporation increase. The trend and magnitude of future climate extremes are also projected to increase in proportion to radiative forcing of RCPs. For RCP 8.5, at the end of the summer season the Arctic is projected to be free of sea ice.  相似文献   
29.
An ensemble data assimilation system using the 4-dimensional Local Ensemble Transform Kalman Filter is implemented to a global non-hydrostatic Numerical Weather Prediction model on the cubed-sphere. The ensemble data assimilation system is coupled to the Korea Institute of Atmospheric Prediction Systems Package for Observation Processing, for real observation data from diverse resources, including satellites. For computational efficiency in a parallel computing environment, we employ some advanced software engineering techniques in the handling of a large number of files. The ensemble data assimilation system is tested in a semi-operational mode, and its performance is verified using the Integrated Forecast System analysis from the European Centre for Medium-Range Weather Forecasts. It is found that the system can be stabilized effectively by additive inflation to account for sampling errors, especially when radiance satellite data are additionally used.  相似文献   
30.
M-sequence waveform coding with a single long codeword has been considered as the basis for long-range underwater acoustic telemetry for one user. (An m-sequence is a periodic, binary, linear-law maximal-length sequence. If the span of the law is n, the maximal length L-2n=1). For a given law, a single m-sequence transmits a maximum of log2 (L) bits of source information per channel word. To increase the number of bits per word, families of m-sequences and Gold codes are considered and compared to a single m-sequence. A hypothetical idealized multipath channel with added white Gaussian noise is assumed. Coding using families of m-sequences is recommended because it requires a smaller bit-energy-to-noise ratio than other waveform codes to achieve an equivalent codeword error probability  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号