首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
地球物理   6篇
地质学   6篇
海洋学   1篇
天文学   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2007年   1篇
排序方式: 共有14条查询结果,搜索用时 125 毫秒
11.
We present the results of early observations for 130 error-boxes of gamma-ray bursts performed with the Mobile Astronomical System of TElescope-Robots (MASTER) global network of robotic telescopes from Moscow State University in fully automatic mode (2011–2017). Among them, GRB 130907A, GRB 120811C, GRB 110801A, GRB 120404A, GRB 140129B, GRB140311B, and GRB 160227A are considered in details. Among these 130 gamma-ray bursts, in the first 60 s after the trigger with the Swift, Fermi, INTEGRAL, MAXI, Lomonosov, and Konus-Wind orbital observatories, the MASTER was pointed on 51 gamma-ray bursts, being the leader in terms of the first pointing. Full observation automation and MASTER own real-time image processing software allowed us to obtain unique data on early optical emission that accompanied 44 gamma-ray bursts (GRB 110801A, GRB120106A, GRB 120404A, GRB 120811C, GRB 120907A, GRB 121011A, GRB 130122A, GRB 130907A, GRB 131030A, GRB 131125A, GRB 140103A, GRB 140108A, GRB 140129B, GRB 140206A, GRB 140304A, GRB 140311B, GRB 140512A, GRB 140629A, GRB 140801A, GRB140907A, GRB 140930B, GRB141028A, GRB 141225A, GRB 150210A, GRB 150211A, GRB 150301B, GRB 150323C, GRB 150404A/Fermi trigger 449861706, GRB 150403A, GRB 150413A, GRB 150518A, GRB 150627A, GRB 151021A, GRB 151215A, GRB 160104A, GRB 160117B, GRB 160131A, GRB 160227A, GRB 160425A, GRB 160611A, GRB 160625B, GRB 160804A, GRB 160910A, GRB 161017A, GRB 161117A, GRB 161119A). We obtain light curves for 13 gamma-ray bursts among the above listed ones and compare the data in the optical (MASTER), X-ray (Swift-XRT), and hard X-ray (Swift-BAT) ranges.  相似文献   
12.
13.
A deep-water station is constructed for measuring the vertical component of the electric field on the surface-bottom base. A long-term experiment of measuring the vertical component in Lake Baikal is carried out. The measured signal fully reflects (due to the absence of the telluric component) variations in total flows in the range of periods from a few hours to tens of days. The coefficient of internal turbulent friction is estimated from the divergence between theoretical and experimental periods of the inertial flow. The detection of spectral maximums corresponding to variation periods of the hard component of solar radiation is the most important result of the present study. Possibly, this fact is direct evidence for the global electric circuit closure under suitable regional conditions.  相似文献   
14.

The results of white-light photometry for a uniquely long series of data (13.5 hours of observations, 1124 measurements) for the Near-Earth Asteroid (NEA) 2015 TB145 are presented. These data were obtained with the MASTER-Amur and MASTER-Tavrida wide-field robotic telescopes of the Mobile Astronomical System of Telescope-Robots (MASTER) global network of Lomonosov Moscow State University, located in the Crimea and in Blagoveshchensk. The object moved by more than 120° during the observations. The asteroid passed the point of closest approach to the Earth, i.e., observations were carried during both the asteroid's approach and recession. Thus, due to the geometry of the passage, this series of observations contains information about the asteroid viewed at different angles, and is very suitable for precisely determining the shape of the object. Mathematical modeling of the light curve and astrometric positions (with the Asteroids3D code) was carried out, and the probable shape of the asteroid (conical) and the rotation period of 5.9 hours were obtained, as well as the orientation of the rotation axis in ecliptic coordinates: longitude λ = 53°, latitude β = −20°. The derived period coincides with twice the period of 2.9 hours obtained by other observers published earlier, within the uncertainties.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号