首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
地球物理   2篇
地质学   16篇
海洋学   3篇
自然地理   3篇
  2016年   4篇
  2015年   1篇
  2014年   5篇
  2013年   2篇
  2011年   2篇
  2009年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1994年   1篇
  1993年   1篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有24条查询结果,搜索用时 0 毫秒
21.
Increased interest in using bivalve cultivation to mitigate eutrophication requires a comprehensive understanding of the net carbon (C) and nitrogen (N) budgets associated with cultivation on an ecosystem scale. This study quantified C and N processes related to clam (Mercenaria mercenaria) aquaculture in a shallow coastal environment (Cherrystone Inlet, VA) where the industry has rapidly increased. Clam physiological rates were compared with basin-wide ecosystem fluxes including primary production, benthic nutrient regeneration, and respiration. Although clam beds occupy only 3 % of the ecosystem’s surface area, clams filtered 7–44 % of the system’s volume daily, consumed an annual average of 103 % of the phytoplankton production, creating a large flux of particulate C and N to the sediments. Annually, N regenerated and C respired by clam and microbial metabolism in clam beds were ~3- and ~1.5-fold higher, respectively, than N and C removed through harvest. Due to the short water residence time, the low watershed load, and the close vicinity of clam beds to the mouth of Cherrystone Inlet, cultivated clams are likely subsidized by phytoplankton from the Chesapeake Bay. Consequently, much of the N released by mineralization associated with clam cultivation is “new” N as it would not be present in the system without bivalve facilitation. Macroalgae that are fueled by the enhanced N regeneration from clams represents a eutrophying process resulting from aquaculture. This synthesis demonstrates the importance of considering impacts of bivalve aquaculture in an ecosystem context especially relative to the potential of bivalves to remove nutrients and enhance C sinks.  相似文献   
22.
Prior to European settlement, oligohaline and mesohaline sections of Chesapeake Bay draining Piedmont saprolite supported diverse and abundant diatom and macrophyte populations. Compositional changes in diatoms and macrophytes in oligohaline sections correspond with 17th- and 19th-century deforestation and increased siltation, while effects on downstream populations were less notable. After deforestation, previously sparse diatom populations in a mesohaline estuary draining sandy Coastal Plain soils became more abundant. Fertilization of cultivated land was accompanied by increased production of both attached and free-floating diatoms. After the discharge of sewage, diatom populations increased enormously in the affected areas, followed by a dramatic decrease. The decrease suggests silica limitation after intense phosphorus enrichment. The loss of macrophytes and increase in planktonic diatoms in oligohaline areas in recent years resemble the historical sequences observed in lakes undergoing eutrophication. However, in the estuary, similar declines have also occurred in macrophyte populations in mesohaline areas where eutrophication is much less severe, but where chlorine and herbicide toxicity during the past 20 yr is similar to upstream areas.  相似文献   
23.
24.
Studies of photosynthesis and respiration in the sheet-like green macroalgaUlva lactuca L. have typically made use of cut discs or individual thalli. Because this species accumulates in layered mats in the field, its structure has the potential to significantly alter metabolic rates compared to those measured for a single layer. The effect of biomass layering on photosynthesis and respiration inU. lactuca was assessed by incubating stacks of 1, 2, 4, and 8 thalli across a range of surface irradiance and in the dark. The photosynthesis-irradiance curve for a single thallus was hyperbolic in shape with maximum photosynthetic rates of 16–24.5 mg O2 g?1 dry weight h?1, a photosynthetic efficiency of 0.18 mg O2 g?1 dry weight h?1 (μE m?2 s?1)?1, and dark respiration rates of 0.95–1.2 mg O2 g?1 dry weight h?1. Weight-specific photosynthesis and respiration rates decreased as the amount of layering increased, with rates approximately twice as high in a single layer as for 8 layers. A simple model revealed that the reduced photosynthetic rates were due to attenuation of light through the stack. Each layer ofUlva reduced the light available to the next layer by approximately 55%, and variability in this absorption was directly related to thallus chlorophyll content. Model runs suggested that acclimation of the thalli by changes in chlorophyll content has the potential to reduce some, but not all of the effect of layering. Reduced respiration rates were atributed to the depletion of oxygen from the interstices between the layers. Results were incorporated into a model of anUlva mat, which predicted decreasing rates of weight-specific total mat production with increasing mat thickness as additional layers are added to the bottom of the mat that neither produce nor consume significant amounts of oxygen. The model predicted area-weighted mat production to increase up to a thickness of 10 layers, after which the rate was constant with increasing mat thickness for the same reason. SinceUlva has a tendency to accumulate in layers under natural conditions, these results improve upon metabolic measurements made with single thalli and will be useful for calculations of macroalgal production as well as in ecosystem models in whichUlva is an important primary producer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号