首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   700篇
  免费   25篇
  国内免费   5篇
测绘学   14篇
大气科学   29篇
地球物理   197篇
地质学   298篇
海洋学   50篇
天文学   114篇
综合类   2篇
自然地理   26篇
  2022年   6篇
  2021年   14篇
  2020年   14篇
  2019年   19篇
  2018年   21篇
  2017年   25篇
  2016年   33篇
  2015年   14篇
  2014年   29篇
  2013年   37篇
  2012年   24篇
  2011年   43篇
  2010年   28篇
  2009年   44篇
  2008年   39篇
  2007年   35篇
  2006年   37篇
  2005年   23篇
  2004年   25篇
  2003年   16篇
  2002年   15篇
  2001年   8篇
  2000年   12篇
  1999年   8篇
  1998年   9篇
  1997年   10篇
  1996年   6篇
  1995年   6篇
  1994年   6篇
  1993年   3篇
  1992年   6篇
  1991年   4篇
  1990年   7篇
  1989年   4篇
  1988年   5篇
  1987年   3篇
  1986年   6篇
  1985年   6篇
  1984年   12篇
  1983年   5篇
  1982年   5篇
  1981年   5篇
  1979年   3篇
  1976年   5篇
  1971年   3篇
  1970年   4篇
  1967年   2篇
  1964年   2篇
  1956年   2篇
  1920年   2篇
排序方式: 共有730条查询结果,搜索用时 12 毫秒
61.
The growing interest in and emphasis on high spatial resolution estimates of future climate has demonstrated the need to apply regional climate models (RCMs) to that problem. As a consequence, the need for validation of these models, an assessment of how well an RCM reproduces a known climate, has also grown. Validation is often performed by comparing RCM output to gridded climate datasets and/or station data. The primary disadvantage of using gridded climate datasets is that the spatial resolution is almost always different and generally coarser than climate model output. We have used a Bayesian statistical model derived from observational data to validate RCM output. We used surface air temperature (SAT) data from 109 observational stations in California, all with records of approximately 50 years in length, and created a statistical model based on this data. The statistical model takes into account the elevation of the station, distance from coastline, and the NOAA climate region in which the station resides. Analysis indicates that the statistical model provides reliable estimates of the mean monthly SAT at any given station. In our method, the uncertainty in the estimates produced by the statistical model are directly determined by obtaining probability density functions for predicted SATs. This statistical model is then used to estimate average SATs corresponding to each of the climate model grid cells. These estimates are compared to the output of the RCM to assess how well the RCM matches the observed climate as defined by the statistical model. Overall, the match between the RCM output and the statistical model is good, with some deficiencies likely due in part to the representation of topography in the RCM.  相似文献   
62.
Abstract

The Ninth Conference of the Parties (COP-9) decided to adopt an accounting system based on expiring carbon credits to address the problem of non-permanent carbon storage in forests established under the Clean Development Mechanism (CDM). This article reviews and discusses carbon accounting methods that were under consideration before COP-9 and presents a model which calculates the minimum area that forest plantation projects should reach to be able to compensate CDM transaction costs with the revenues from carbon credits. The model compares different accounting methods under various sets of parameters on project management, transaction costs, and carbon prices. Model results show that under current carbon price and average transaction costs, projects with an area of less than 500 ha are excluded from the CDM, whatever accounting method is used. Temporary crediting appears to be the most favorable approach to account for non-permanent carbon removal in forests and also for the feasibility of smaller projects. However, lower prices for credits with finite lifetimes may prevent the establishment of CDM forestry projects. Also, plantation projects with low risk of unexpected carbon loss and sufficient capacity for insuring or buffering the risk of carbon re-emission would benefit from equivalence-adjusted average carbon storage accounting rather than from temporary crediting.  相似文献   
63.
In 1989, the need for reliable gridded land surface precipitation data sets, in view of the large uncertainties in the assessment of the global energy and water cycle, has led to the establishment of the Global Precipitation Climatology Centre (GPCC) at Deutscher Wetterdienst on invitation of the WMO. The GPCC has calculated a precipitation climatology for the global land areas for the target period 1951–2000 by objective analysis of climatological normals of about 67,200 rain gauge stations from its data base. GPCC's new precipitation climatology is compared to several other station-based precipitation climatologies as well as to precipitation climatologies derived from the GPCP V2.2 data set and from ECMWF's model reanalyses ERA-40 and ERA-Interim. Finally, how GPCC's best estimate for terrestrial mean precipitation derived from the precipitation climatology of 786 mm per year (equivalent to a water transport of 117,000 km3) is fitting into the global water cycle context is discussed.  相似文献   
64.
Some peak PM10 episodes, occurred during PM monitoring campaigns performed on October 2005 and February and June 2006 in Bari town, have been characterized. Moreover back trajectories of air masses and Principal Component Analyses were applied. Three of the peak PM10 episodes investigated were related to local emissions of primary pollutants during poor atmospheric dispersion conditions. The other two peak PM10 episodes considered are related with long range transport air masses toward Apulia region: in one case the chemical characterization and the back trajectories analysis indicate that high PM10 value detected is due to the Saharan dust advection in the Apulia region; in the other case air masses with different origin give rise to high PM10 value.Moreover PM10 daily mean concentrations, presented in this paper collected from January 2005 to August 2007 and obtained by automatic device in six stations of air quality monitoring networks in Bari territory, do not show a seasonal trend for PM10 concentrations, contrary to the PM10 trend shown in the towns of North Italy. This can be explained mostly considering that our region presents generally meteo-climatic conditions that favour pollutants dispersion.  相似文献   
65.
The barrier layer (BL) — a salinity stratification embedded in the upper warm layer — is a common feature of the tropical oceans. In the northern Indian Ocean, it has the potential to significantly alter the air–sea interactions. In the present paper, we investigate the spatio-temporal structure of BL in the Arabian Sea during summer monsoon. This season is indeed a key component of the Asian climate. Based on a comprehensive dataset of Conductivity–Temperature–Depth (CTD) and Argo in situ hydrographic profiles, we find that a BL exists in the central Arabian Sea during summer. However, it is highly heterogeneous in space, and intermittent, with scales of about ~100 km or less and a couple of weeks. The BL patterns appear to be closely associated to the salinity front separating two water masses (Arabian Sea High Salinity Water in the Northern and Eastern part of the basin, fresher Bay of Bengal Water to the south and to the west). An ocean general circulation model is used to infer the formation mechanism of the BL. It appears that thick (more than 40 m) BL patterns are formed at the salinity front by subduction of the saltier water mass under the fresher one in an area of relatively uniform temperature. Those thick BL events, with variable position and timing, result in a broader envelope of thinner BL in climatological conditions. However, the individual patterns of BL are probably too much short-lived to significantly affect the monsoonal air–sea interactions.  相似文献   
66.
Groundwater transit time is an essential hydrologic metric for groundwater resources management. However, especially in tropical environments, studies on the transit time distribution (TTD) of groundwater infiltration and its corresponding mean transit time (mTT) have been extremely limited due to data sparsity. In this study, we primarily use stable isotopes to examine the TTDs and their mTTs of both vertical and horizontal infiltration at a riverbank infiltration area in the Vietnamese Mekong Delta (VMD), representative of the tropical climate in Asian monsoon regions. Precipitation, river water, groundwater, and local ponding surface water were sampled for 3 to 9 years and analysed for stable isotopes (δ18O and δ2H), providing a unique data set of stable isotope records for a tropical region. We quantified the contribution that the two sources contributed to the local shallow groundwater by a novel concept of two‐component lumped parameter models (LPMs) that are solved using δ18O records. The study illustrates that two‐component LPMs, in conjunction with hydrological and isotopic measurements, are able to identify subsurface flow conditions and water mixing at riverbank infiltration systems. However, the predictive skill and the reliability of the models decrease for locations farther from the river, where recharge by precipitation dominates, and a low‐permeable aquitard layer above the highly permeable aquifer is present. This specific setting impairs the identifiability of model parameters. For river infiltration, short mTTs (<40 weeks) were determined for sites closer to the river (<200 m), whereas for the precipitation infiltration, the mTTs were longer (>80 weeks) and independent of the distance to the river. The results not only enhance the understanding of the groundwater recharge dynamics in the VMD but also suggest that the highly complex mechanisms of surface–groundwater interaction can be conceptualized by exploiting two‐component LPMs in general. The model concept could thus be a powerful tool for better understanding both the hydrological functioning of mixing processes and the movement of different water components in riverbank infiltration systems.  相似文献   
67.
68.
A Lagrangian analysis was applied to the outputs of a coupled physical-biogeochemical model to describe the redistribution of nitrate-rich and nitrate-poor surface water masses in the tropical Pacific throughout the major 1997 El Niño. The same tool was used to analyze the causes of nitrate changes along trajectories and to investigate the consequences of the slow nitrate uptake in the high nutrient low chlorophyll (HNLC) region during the growth phase of the event. Three patterns were identified during the drift of water masses. The first mechanism is well known along the equator: oligotrophic waters from the western Pacific are advected eastward and retain their oligotrophic properties along their drift. The second concerns the persistent upwelling in the eastern basin. Water parcels have complex trajectories within this retention zone and remain mesotrophic. This study draws attention to the third process which is very specific to the HNLC region and to the El Niño period. During the 1997 El Niño, horizontal and vertical inputs of nitrate decreased so dramatically that nitrate uptake by phytoplankton became the only mechanism driving nitrate changes along pathways. The study shows that because of the slow nitrate uptake characteristic of the tropical Pacific HNLC system, nitrate in the pre-El Niño photic layer can support biological production for a period of several months. As a consequence, the slow nitrate uptake delays the gradual onset of oligotrophic conditions over nearly all the area usually occupied by upwelled waters. Owing to this process, mesotrophic conditions persist in the tropical Pacific during El Niño events.  相似文献   
69.
The microstructure and some physico-mechanical properties of Beardsley and Faith, both H5 chondrites, were compared. Although the bulk sample porosities are respectively 9.1% and 14.5%, suggesting lower consolidation of Faith, the effective porosities are 5.63% and 1.79%—much higher for Beardsley. The material of Faith, characterized by vugs, vesicles and closed channels—abundant but all sized below 0.01 μm—is of higher strength than that of Beardsley, where joints, fissures, open channels and microcracks are sized from 0.1 to 10 μm. The higher elastic properties of Faith are shown by the velocity of the compressional wave of 6.66 km s−1 against that of 5.12 km s−1 for Beardsley. An example of physical diversity among chondrites to the same chemical-petrologic type is therefore demonstrated.  相似文献   
70.
A statistical examination of isotopic distributions for MORB from various ocean ridges leads to the “blob cluster model”, in which the oceanic crust accreting at ridges results from the mixing of two components within the ascending mantle. These are (1) upper mantle material and (2) discrete rising blobs of more radiogenic material. The blobs are fractionated to a variable degree and are distributed in the upper mantle circulation in a manner that is related to the spreading rate.(1) Themean values of the isotopic distributions allow us to calculate the probabilities of the two types of material within the mantle. The results show that theproportion of asthenospheric material in the mixtureincreases with the spreading rate, in agreement with the hypothesis of blob dilution within the upper mantle convection.Mass fluxes can be estimated for the rising blobs from these probabilities, which depend on the respective concentrations in the sources of the two types of material. If the blobs originate in the lower mantle, this flux estimation would suggest that a significant part of the lower mantle has been injected into the upper mantle during earth history.(2) Thestandard deviations of the distributions depend on the “efficiency” of the mixing process:the more imbricated are the asthenospheric and blob materials in the mixture,the smaller is theisotopic spread. This efficiency parameter is shown to increase with the spreading rate, as already suggested by previous comparisons between the East Pacific Rise and the Mid-Atlantic Ridge. Moreover, this feature may also be correlated with other data such as ridge bathymetric variations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号