首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1200篇
  免费   23篇
  国内免费   3篇
测绘学   25篇
大气科学   85篇
地球物理   264篇
地质学   424篇
海洋学   112篇
天文学   198篇
综合类   3篇
自然地理   115篇
  2020年   17篇
  2019年   9篇
  2018年   17篇
  2017年   11篇
  2016年   25篇
  2015年   23篇
  2014年   29篇
  2013年   52篇
  2012年   41篇
  2011年   53篇
  2010年   41篇
  2009年   54篇
  2008年   54篇
  2007年   51篇
  2006年   37篇
  2005年   41篇
  2004年   56篇
  2003年   45篇
  2002年   47篇
  2001年   25篇
  2000年   21篇
  1999年   17篇
  1998年   10篇
  1997年   18篇
  1996年   16篇
  1995年   25篇
  1994年   13篇
  1993年   20篇
  1992年   18篇
  1991年   18篇
  1990年   11篇
  1989年   15篇
  1988年   13篇
  1987年   20篇
  1986年   17篇
  1985年   20篇
  1984年   30篇
  1983年   28篇
  1982年   18篇
  1981年   18篇
  1980年   14篇
  1979年   13篇
  1978年   11篇
  1977年   14篇
  1976年   12篇
  1975年   10篇
  1974年   7篇
  1973年   11篇
  1972年   6篇
  1970年   11篇
排序方式: 共有1226条查询结果,搜索用时 15 毫秒
161.
An error analysis of resonant orbits for geodesy indicates that attempts to use resonance to recover high order geopotential coefficients may be seriously hampered by errors in the geopotential. This effect, plus the very high correlations (up to .99) of the resonant coefficients with each other and the orbital period in single satellite solutions, makesindividual resonant orbits of limited value for geodesy. Multiple-satellite, single-plane solutions are only a slight improvement over the single satellite case. Accurate determination of high order coefficients from low altitude resonant satellites requires multiple orbit planes and small drift-periods to reduce correlations and effects of errors of non-resonant geopotential terms. Also, the effects of gravity model errors on low-altitude resonant satellites make the use of tracking arcs exceeding two to three weeks of doubtful validity. Because high-altitude resonant orbits are less affected by non-resonant terms in the geopotential, much longer tracking arcs can be used for them.  相似文献   
162.
163.
High energy particles, with energies above those attainable by adiabatic or steady-state electric field acceleration, have been observed in and around the outer regions of planetary magnetospheres. Acceleration by large amplitude sporadic cross-tail electric fields over an order of magnitude greater than steady-state convection fields is proposed as a source of these particles. It is suggested that such explosive electric fields will occur intermittently in the vicinity of the tail neutral line in the expansive phases of substorms. We use laboratory Double Inverse Pinch Device (DIPD) and satellite evidence to estimate this electric potential for substorms at Earth; values of 500 kV to 2 MV are calculated, in agreement with particle observations. It is further suggested that these particles, which have been accelerated in the night side magnetosphere, drift to the dayside on closed field lines, and under certain interplanetary conditions can escape to regions upstream of the bow shock.  相似文献   
164.
165.
Trend surfaces were determined and compared for the bedrock surface, two characteristics of the present topography, and 42 water well log reports of glacially buried carbonaceous horizons within drift from an area in central Michigan. Data almost certainly indicate that the glacially buried Pleistocene organic deposits represent two or more pre-Woodfordian paleosurfaces. Trend surface analysis of buried organic horizons may be useful for recognizing paleosurfaces and separating drift sheets in other areas with limited subsurface data.  相似文献   
166.
Lava flows from Mauna Loa and Huallai volcanoes are a major volcanic hazard that could impact the western portion of the island of Hawaii (e.g., Kona). The most recent eruptions of these two volcanoes to affect Kona occurred in a.d. 1950 and ca. 1800, respectively. In contrast, in eastern Hawaii, eruptions of neighboring Klauea volcano have occurred frequently since 1955, and therefore have been the focus for hazard mitigation. Official preparedness and response measures are therefore modeled on typical eruptions of Klauea.The combinations of short-lived precursory activity (e.g., volcanic tremor) at Mauna Loa, the potential for fast-moving lava flows, and the proximity of Kona communities to potential vents represent significant emergency management concerns in Kona. Less is known about past eruptions of Huallai, but similar concerns exist. Future lava flows present an increased threat to personal safety because of the short times that may be available for responding.Mitigation must address not only the specific characteristics of volcanic hazards in Kona, but also the manner in which the hazards relate to the communities likely to be affected. This paper describes the first steps in developing effective mitigation plans: measuring the current state of peoples knowledge of eruption parameters and the implications for their safety. We present results of a questionnaire survey administered to 462 high school students and adults in Kona. The rationale for this study was the long lapsed time since the last Kona eruption, and the high population growth and expansion of infrastructure over this time interval. Anticipated future growth in social and economic infrastructure in this area provides additional justification for this work.The residents of Kona have received little or no specific information about how to react to future volcanic eruptions or warnings, and short-term preparedness levels are low. Respondents appear uncertain about how to respond to threatening lava flows and overestimate the minimum time available to react, suggesting that personal risk levels are unnecessarily high. A successful volcanic warning plan in Kona must be tailored to meet the unique situation there.  相似文献   
167.
A Porites sp. coral growing offshore from the Sepik and Ramu Rivers in equatorial northern Papua New Guinea has yielded an accurate 20-year history (1977–1996) of sea surface temperature (SST), river discharge, and wind-induced mixing of the upper water column. Depressions in average SSTs of about 0.5–1.0 °C (indicated by coral Sr/Ca) and markedly diminished freshwater runoff to the coastal ocean (indicated by coral δ18O, δ13C and UV fluorescence) are evident during the El Niño – Southern Oscillation (ENSO) events of 1982–1983, 1987 and 1991-1993. The perturbations recorded by the coral are in good agreement with changes in instrumental SST and river discharge/precipitation records, which are known to be diagnostic of the response of the Pacific Warm Pool ocean–atmosphere system to El Niño. Consideration of coastal ocean dynamics indicates that the establishment of northwest monsoon winds promotes mixing of near-surface waters to greater depths in the first quarter of most years, making the coral record sensitive to changes in the Asian–Australian monsoon cycle. Sudden cooling of SSTs by 1°C following westerly wind episodes, as indicated by the coral Sr/Ca, is consistent with greater mixing in the upper water column at these times. Furthermore, the coral UV fluorescence and oxygen isotope data indicate minimal contribution of river runoff to surface ocean waters at the beginning of most years, during the time of maximum discharge. This abrupt shift in flood-plume behaviour appears to reflect the duration and magnitude of northwest monsoon winds, which tend to disperse flood plume waters to a greater extent in the water column when wind-mixing is enhanced. Our results suggest that a multi-proxy geochemical approach to the production of long coral records should provide comprehensive reconstructions of tropical paleoclimate processes operating on interannual timescales.  相似文献   
168.
We report measurements of Pb diffusion in both synthetic (CePO4) and natural monazites run under dry, 1-atm conditions. Powdered mixtures of prereacted CePO4 and PbZrO3 were used as the source of Pb diffusant for “in-diffusion” experiments conducted in sealed Pt capsules for durations ranging from a few hours to several weeks. Following the diffusion anneals, Pb concentration profiles were measured with Rutherford Backscattering Spectroscopy (RBS) and supplemented by measurements with secondary ion mass spectrometry (SIMS). In order to evaluate potential compositional effects upon Pb diffusivity and simulate diffusional Pb loss that might occur in natural systems, we also conducted “out-diffusion” experiments on Pb-bearing natural monazites. In these experiments, monazite grains were surrounded by a synthetic zircon powder to act as a “sink.” Monazites from these experiments were analyzed with SIMS. Over the temperature range 1100 to 1350°C, the Arrhenius relation determined for in-diffusion experiments on synthetic monazite is given by:
  相似文献   
169.
In the Gawler Craton, the completeness of cover concealing the crystalline basement in the region of the giant Olympic Dam Cu–Au deposit has impeded any sufficient understanding of the crustal architecture and tectonic setting of its IOCG mineral-system. To circumvent this problem, deep seismic reflection data were recently acquired from  250 line-km of two intersecting traverses, centered on the Olympic Dam deposit. The data were recorded to 18 s TWT ( 55 km). The crust consists of Neoproterozoic cover, in places more than 5 km thick, over crystalline basement with the Moho at depths of 13–14 s TWT ( 40–42 km). The Olympic Dam deposit lies on the boundary between two distinct pieces of crust, one interpreted as the Archean–Paleoproterozoic core to the craton, the other as a Meso–Neoproterozoic mobile belt. The host to the deposit, a member of the  1590 Ma Hiltaba Suite of granites, is situated above a zone of reduced impedance contrast in the lower crust, which we interpret to be source-region for its  1000 °C magma. The crystalline basement is dominated by thrusts. This contrasts with widely held models for the tectonic setting of Olympic Dam, which predict extension associated with heat from the mantle producing the high temperatures required to generate the Hiltaba Suite granites implicated in mineralization. We use the seismic data to test four hypotheses for this heat-source: mantle underplating, a mantle-plume, lithospheric extension, and radioactive heating in the lower crust. We reject the first three hypotheses. The data cannot be used to reject or confirm the fourth hypothesis.  相似文献   
170.
Potential changes in summertime hydroclimatology over the northeastern (NE) region of the USA induced by increases in greenhouse gas (GHG) concentrations are investigated using a state-of-the-art regional climate modeling system. Results for a higher emissions scenario illustrate changes that may occur if dependence on fossil fuels continues over the coming century. Summertime precipitation is projected to decrease across much of the central NE, but increase over the southernmost and northernmost portions of the domain. Evaporation is expected to increase across the entire domain. The balance between these two results in a decrease in soil moisture content across most of the domain (by approximately 10 mm) and an increase in the summertime soil-moisture depletion rate (by approximately 10 mm/month). At the same time, an increase in both atmospheric near-surface specific and saturation specific humidity is projected, resulting in an increase in relative humidity across the southern portion of the domain, with slight decreases over the northern portion. Combined with an average increase in summer temperatures of 3.5°C, the projected increase in relative humidity results in a marked increase in the average daily maximum heat index for the region on the order of 3.9°C, as well as a 350–400% increase in the number of days with heat index values exceeding 32.2°C (90°F)—the level of “extreme caution”. Taken together, these high-resolution, dynamically-generated projections confirm the potential for significant summertime climate change impacts on the NE over the coming century as suggested by previous studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号