首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
测绘学   1篇
地球物理   4篇
地质学   3篇
海洋学   3篇
  2015年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2008年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
11.
The paper presents the main characteristics of an innovative platform which has been conceived and designed to extend the operational capabilities of current unmanned surface vehicles in terms of platform stability in waves and of powering requirement at a relatively high speed. The main idea which rules the project is the realization of a small autonomous surface unit (about 6 m in length) capable of undertaking several tasks in the marine environment even with moderate rough sea conditions. The designed vessel has the ability to locate, recover, and launch other members of the autonomous fleet (like AUVs or other underwater devices) and at the same time could carry out a surveillance service of the surrounding areas. To manage these tasks, the vehicle is designed to provide a fairly good autonomy which is needed to face intermediate-range missions (100 nautical miles). The choice of a small waterplane area twin hull (SWATH) form has been motivated by its excellent properties of seakeeping qualities, combined with a non-conventional low resistance underwater hull shape, currently under patenting process, which is able to reduce to a minimum the resistance of the vessel especially at higher speeds. To obtain the most efficient profile of the underwater bodies, a systematic optimization with an automatic procedure based on a parametric definition of the geometry, a state-of-the-art computational fluid dynamics (CFD) flow solver, and a differential evolution global minimization algorithm have been created and used. As expected, all the final CFD computations on the best design have demonstrated the superior efficiency of the developed unconventional SWATH technology with respect to different alternatives of current hull typologies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号