首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94891篇
  免费   1894篇
  国内免费   759篇
测绘学   2386篇
大气科学   7196篇
地球物理   19456篇
地质学   31884篇
海洋学   8508篇
天文学   21367篇
综合类   195篇
自然地理   6552篇
  2021年   684篇
  2020年   811篇
  2019年   868篇
  2018年   1696篇
  2017年   1610篇
  2016年   2199篇
  2015年   1445篇
  2014年   2173篇
  2013年   4735篇
  2012年   2336篇
  2011年   3426篇
  2010年   3044篇
  2009年   4267篇
  2008年   3776篇
  2007年   3608篇
  2006年   3502篇
  2005年   2987篇
  2004年   3030篇
  2003年   2858篇
  2002年   2756篇
  2001年   2437篇
  2000年   2364篇
  1999年   2007篇
  1998年   2018篇
  1997年   2001篇
  1996年   1739篇
  1995年   1648篇
  1994年   1496篇
  1993年   1366篇
  1992年   1303篇
  1991年   1154篇
  1990年   1355篇
  1989年   1194篇
  1988年   1100篇
  1987年   1295篇
  1986年   1181篇
  1985年   1436篇
  1984年   1625篇
  1983年   1523篇
  1982年   1403篇
  1981年   1396篇
  1980年   1171篇
  1979年   1150篇
  1978年   1165篇
  1977年   1100篇
  1976年   1009篇
  1975年   963篇
  1974年   962篇
  1973年   974篇
  1972年   600篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
31.
Transverse secondary circulations involving surface convergence, observed in a well-mixed estuary in North Wales, are made visible by the collection of surface material along an axial line which extends continuously for many kilometres through the estuary. The circulation and axial convergence, however, are seen only during the flood phase of the tide and no similar behaviour has been observed during the ebb phase.Convergent circulations in the estuary are associated with small but steady transverse density gradients in the cross-section, produced by non-uniform advection of the longitudinal gradient through the channel. A diagnostic model, using measured mean distributions of cross-sectional density, indicates surface transverse velocities (~0.1 ms?1) similar to those observed in the estuary. The model further predicts appreciable transverse divergent currents at a fractional depth of 0.75: a prediction which has been tested in the estuary using a vertical array of accurately resolving current direction indicators.  相似文献   
32.
Two distinct age estimates for eclogite-facies metamorphism in the Sanbagawa belt have been proposed: (i) c.  120–110 Ma based on a zircon SHRIMP age for the Western Iratsu unit and (ii) c.  88–89 Ma based on a garnet–omphacite Lu–Hf isochron age from the Seba and Kotsu eclogite units. Despite the contrasting estimates of formation ages, petrological studies suggest the formation conditions of the Western Iratsu unit are indistinguishable from those of the other two units—all ∼20 kbar and 600–650 °C. Studies of the associated geological structures suggest the Seba and Western Iratsu units are parts of a larger semi-continuous eclogite unit. A combination of geochronological and petrological studies for the Western Iratsu eclogite offers a resolution to this discrepancy in age estimates. New Lu–Hf dating for the Western Iratsu eclogite yields an age of 115.9 ± 0.5 Ma that is compatible with the zircon SHRIMP age. However, petrological studies show that there was significant garnet growth in the Western Iratsu eclogite before eclogite facies metamorphism, and the early core growth is associated with a strong concentration of Lu. Pre-eclogite facies garnet (Grt1) includes epidote–amphibolite facies parageneses equilibrated at 550–650 °C and ∼10 kbar, and this is overgrown by prograde eclogite facies garnet (Grt2). The Lu–Hf age of c.  116 Ma is strongly skewed to the isotopic composition of Grt1 and is interpreted to reflect the age of the pre-eclogite phase. The considerable time gap ( c.  27 Myr) between the two Lu–Hf ages suggests they may be related to separate tectonic events or distinct phases in the evolution of the Sanbagawa subduction zone.  相似文献   
33.
Monocrystalline quartz inclusions in garnet and omphacite from various eclogite samples from the Lanterman Range (Northern Victoria Land, Antarctica) have been investigated by cathodoluminescence (CL), Raman spectroscopy and imaging, and in situ X‐ray (XR) microdiffraction using the synchrotron. A few inclusions, with a clear‐to‐opalescent lustre, show ‘anomalous’ Raman spectra characterized by weak α‐quartz modes, the broadening of the main α‐quartz peak at 465 cm?1, and additional vibrations at 480–485, 520–523 and 608 cm?1. CL and Raman imaging indicate that this ‘anomalous’α‐quartz occurs as relicts within ordinary α‐quartz, and that it was preserved in the internal parts of small quartz inclusions. XR diffraction circular patterns display irregular and broad α‐quartz spots, some of which show an anomalous d‐spacing tightening of ~2%. They also show some very weak, hazy clouds that have d‐spacing compatible with coesite but not with α‐quartz. Raman spectrometry and XR microdiffraction characterize the anomalies with respect to α‐quartz as (i) a pressure‐induced disordering and incipient amorphization, mainly revealed by the 480–485 and 608‐cm?1 Raman bands, together with (ii) a lattice densification, evidenced by d‐spacing tightening; (iii) the cryptic development of coesite, 520–523 cm?1 being the main Raman peak of coesite and (iv) Brazil micro‐twinning. This ‘anomalous’α‐quartz represents the first example of pressure‐induced incipient amorphization of a metastable phase in a crustal rock. This issue is really surprising because pressure‐induced amorphization of metastable α‐quartz, observed in impactites and known to occur between 15 and 32 GPa during ultrahigh‐pressure (UHP) experiments at room temperature, is in principle irrelevant under normal geological P–T conditions. A shock (due to a seism?) or a local overpressure at the inclusion scale (due to expansion mismatch between quartz and its host mineral) seem the only geological mechanisms that can produce such incipient amorphization in crustal rocks. This discovery throws new light on the modality of the quartz‐coesite transition and on the pressure regimes (non‐lithostatic v. lithostatic) during high‐pressure/UHP metamorphism. In particular, incipient amorphization of quartz could favour the quartz‐coesite transition, or allow the growth of metastable coesite, as already experimentally observed.  相似文献   
34.
Stress wave attenuation across fractured rock masses is a great concern of underground structure safety. When the wave amplitude is large, fractures experience nonlinear deformation during the wave propagation. This paper presents a study on normal transmission of P‐wave across parallel fractures with nonlinear deformational behaviour (static Barton–Bandis model). The results show that the magnitude of transmission coefficient is a function of incident wave amplitude, nondimensional fracture spacing and number of fractures. Two important indices of nondimensional fracture spacing are identified, and they divide the area of nondimensional fracture spacing into three parts (individual fracture area, transition area and small spacing area). In the different areas, the magnitude of transmission coefficient has different trends with nondimensional fracture spacing and number of fractures. In addition, the study reveals that under some circumstances, the magnitude of transmission coefficient increases with increasing number of fractures, and is larger than 1. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
35.
36.
Measurements of 18O concentrations in precipitation, soil solution, spring and runoff are used to determine water transit time in the small granitic Strengbach catchment (0·8 km2; 883–1146 m above sea level) located in the Vosges Mountains of northeastern France. Water transit times were calculated by applying the exponential, exponential piston and dispersion models of the FlowPC program to isotopic input (rainfall) and output (spring and stream water) data sets during the period 1989–95. The input function of the model was modified compared with the former version of the model and estimated by a deterministic approach based on a simplified hydrological balance. The fit between observed and calculated output data showed marked improvements compared with results obtained using the initial version of the model. An exponential piston version of the model applied to spring water indicates a 38·5 month mean transit time, which suggests that the volume in the aquifer, expressed in water depth, is 2·4 m. A considerable thickness (>45 m) of fractured bedrock may be involved for such a volume of water to be stored in the aquifer. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
37.
Green Lake Landslide is an ancient giant rock slide in gneiss and granodiorite located in the deeply glaciated Fiordland region of New Zealand. The landslide covers an area of 45 km2 and has a volume of about 27 km3. It is believed to be New Zealand's largest landslide, and possibly the largest landslide of its type on Earth. It is one of 39 known very large (106–107 m3) and giant (≥108 m3) postglacial landslides in Fiordland discussed in the paper. Green Lake Landslide resulted in the collapse of a 9 km segment of the southern Hunter Mountains. Slide debris moved up to 2.5 km laterally and 700 m vertically, and formed a landslide dam about 800 m high, impounding a lake about 11 km long that was eventually infilled with sediments. Geomorphic evidence supported by radiocarbon dating indicates that Green Lake Landslide probably occurred 12 000–13 000 years ago, near the end of the last (Otira) glaciation. The landslide is described, and its geomorphic significance, age, failure mechanism, cause, and relevance in the region are discussed, in relation to other large landslides and recent earthquake-induced landslides in Fiordland. The slope failure occurred on a low-angle fault zone undercut by glacial erosion, and was probably triggered by strong shaking (MM IX–X) associated with a large (≥ M 7.5–8) earthquake, on the Alpine Fault c. 80 km to the northwest. Geology was a major factor that controlled the style and size of Green Lake landslide, and in that respect it is significantly different from most other gigantic landslides. Future large earthquakes on the Alpine Fault in Fiordland are likely to trigger more very large and giant landslides across the region, causing ground damage and devastation on a scale that has not occurred during the last 160 years, with potentially disastrous effects on towns, tourist centres, roads, and infrastructure. The probability of such an event occurring within the next 50 years may be as high as 45%.  相似文献   
38.
In the upper Chesapeake Bay (Maryland, U.S.A.) field surveys were conducted at 18 multiple longshore sand bar sites. The multiple bar systems were found in water depths less than approximately 2 m (mean sea level), and exhibited mild bottom slopes of 0·0052 or less. The number of bars composing each system ranged from four to 17 and the spacing between the crests typically increased in the offshore direction, ranging from 12 to 70 m. Bar height also typically increased with distance offshore and ranged from 0·03 to 0·61 m. A grain size analysis of crest and trough sediment did not reveal any significant differences and the sediment was categorized as ‘fine sand’. A review of the literature data indicated that the Chesapeake Bay multiple bars possessed similar characteristics to those found in Gelding Bay (Baltic Sea); similarities in fetch, wave height and tidal range between the two bays may account for this finding. The surf-scaling parameter indicated that the multiple bar systems were extremely dissipative with regard to wave energy, and wave height appeared to be an important factor in controlling bar spacing and bar height. A multiple wave break point hypothesis was discussed as a possible mechanism for the formation of Chesapeake Bay multiple longshore bars, and limited observational evidence appeared to support such a mechanism.  相似文献   
39.
An analysis of the UV spectra of 28 asteroids obtained with the Internal Ultraviolet Explorer (IUE) satellite is presented. The spectra lie within the range 2100–3200 Å. Our results are examined in terms of both asteroid classification and of current ideas concerning the surface mineralogy of asteroids. For all the asteroids examined, UV reflectivity declines approximately linearly toward shorter wavelengths. In general, the same taxonomic groups are seen in the UV as in the visible and IR, although there is some evidence for asteroids with anomalous UV properties and for UV subclasses within the S class. No mineral absorption features are reported of strength similar to the strongest features in the visible and IR regions, but a number of shallow absorptions do occur and may provide valuable information on the surface composition of many asteroids.  相似文献   
40.
Silica in bedded cherts interstratified with manganese carbonates in a deep‐water carbonate ramp succession of the Neoproterozoic Penganga Group, India, displays film‐like, spherical to rod‐shaped, and tubular branching microstructures. The microstructures resemble mineralized extracellular polysaccharides, biofilms and bacterial morphologies. The microstructures suggest silicification by nucleation of silica on organic‐templates or indirectly as sorbed species accumulating on organic templates. Given that similar microstructures have also been documented in Archean cherts it is proposed that organotemplates might have been an important sink for the deposition of silica in Precambrian deep‐water marine environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号