首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1045篇
  免费   45篇
  国内免费   7篇
测绘学   36篇
大气科学   49篇
地球物理   214篇
地质学   316篇
海洋学   66篇
天文学   314篇
自然地理   102篇
  2021年   10篇
  2020年   9篇
  2019年   11篇
  2018年   13篇
  2017年   17篇
  2016年   28篇
  2015年   17篇
  2014年   26篇
  2013年   73篇
  2012年   17篇
  2011年   35篇
  2010年   40篇
  2009年   48篇
  2008年   56篇
  2007年   58篇
  2006年   61篇
  2005年   42篇
  2004年   43篇
  2003年   37篇
  2002年   37篇
  2001年   31篇
  2000年   27篇
  1999年   27篇
  1998年   40篇
  1997年   19篇
  1996年   9篇
  1995年   13篇
  1994年   19篇
  1993年   10篇
  1992年   7篇
  1991年   6篇
  1990年   12篇
  1989年   12篇
  1988年   11篇
  1987年   12篇
  1986年   12篇
  1985年   14篇
  1984年   8篇
  1983年   8篇
  1982年   10篇
  1981年   6篇
  1980年   11篇
  1979年   10篇
  1978年   6篇
  1977年   7篇
  1976年   8篇
  1975年   5篇
  1973年   5篇
  1972年   12篇
  1971年   5篇
排序方式: 共有1097条查询结果,搜索用时 0 毫秒
181.
Both the rate and the vertical distribution of soil disturbance modify soil properties such as porosity, particle size, chemical composition and age structure; all of which play an important role in a soil's biogeochemical functioning. Whereas rates of mixing have been previously quantified, the nature of bioturbation's depth dependence remains poorly constrained. Here we constrain, for the first time, the relationship between mixing rate and depth in a bioturbated soil in northeast Queensland, Australia using a novel method combining OSL (optically‐stimulated luminescence) ages and meteoric beryllium‐10 (10Be) inventories. We find that the best fit mixing rate decreases non‐linearly with increasing soil depth in this soil and the characteristic length scale of 0.28 m over which the mixing coefficient decays is comparable to reported rooting depth coefficients. In addition we show that estimates of surface mixing rates from OSL data are highly dependent on erosion rate and that erosion rate must be constrained if accurate mixing rates are to be quantified. We calculate surface diffusion‐like mixing coefficients of 1.8 × 10?4 and 2.1 × 10?4 m2 yr?1 for the studied soil for two different estimates of soil erosion. © 2014 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   
182.
Discharge of Fe(II)-rich groundwaters into surface-waters results in the accumulation of Fe(III)-minerals in salinized sand-bed waterways of the Hunter Valley, Australia. The objective of this study was to characterise the mineralogy, micromorphology and pore-water geochemistry of these Fe(III) accumulations. Pore-waters had a circumneutral pH (6.2–7.2), were sub-oxic to oxic (Eh 59–453 mV), and had dissolved Fe(II) concentrations up to 81.6 mg L−1. X-ray diffraction (XRD) on natural and acid-ammonium-oxalate (AAO) extracted samples indicated a dominance of 2-line ferrihydrite in most samples, with lesser amounts of goethite, lepidocrocite, quartz, and alumino-silicate clays. The majority of Fe in the samples was bound in the AAO extractable fraction (FeOx) relative to the Na-dithionite extractable fraction (FeDi), with generally high FeOx:FeDi ratios (0.52–0.92). The presence of nano-crystalline 2-line ferrihydrite (Fe5HO3·4H2O) with lesser amounts of goethite (α-FeOOH) was confirmed by scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX), and transmission electron microscopy (TEM) coupled with selected area electron diffraction (SAED). In addition, it was found that lepidocrocite (γ-FeOOH), which occurred as nanoparticles as little as ∼5 lattice spacings thick perpendicular to the (0 2 0) lattice plane, was also present in the studied Fe(III) deposits. Overall, the results highlight the complex variability in the crystallinity and particle-size of Fe(III)-minerals which form via oxidation of Fe(II)-rich groundwaters in sand-bed streams. This variability may be attributed to: (1) divergent precipitation conditions influencing the Fe(II) oxidation rate and the associated supply and hydrolysis of the Fe(III) ion, (2) the effect of interfering compounds, and (3) the influence of bacteria, especially Leptothrix ochracea.  相似文献   
183.
White WB 《Ground water》2012,50(2):180-186
The very diverse types of ground‐water behavior in carbonate terrains can be classified by relating the flow type to a particular hydrogeologic environment each exhibiting a characteristic cave morphology. The ground water may move by diffuse flow, by retarded flow, or by free flow. Diffuse flow occurs in less soluble rocks such as extremely shaley limestones or crystalline dolomites. Integrated conduits are rare. Caves tend to be small, irregular, and often little more than solutionally widened joints. Retarded flows occur in artesian environments and in situations where unfavorable stratigraphy forces ground water to be confined to relatively thin beds. Network cave patterns are characteristic since hydrodynamic forces are damped by the external controls. Solution occurs along many available joints. Free flowing aquifers are those in which solution has developed a subsurface drainage system logically regarded as an underground extension of surface streams. These streams may have fully developed surface tributaries as well as recharge from sinkholes and general infiltration. Characteristic cave patterns are those of integrated conduit systems which are often truncated into linear, angulate, and branchwork caves. Free Flow aquifers may be further subdivided into Open aquifers lying beneath karst plains and Capped aquifers in which significant parts of the drainage net lie beneath an insoluble cap rock. Other geologic factors such as structure, detailed lithology, relief, and locations of major streams, control the details of cave morphology and orientation of the drainage network.  相似文献   
184.
Watershed simulation models are used extensively to investigate hydrologic processes, landuse and climate change impacts, pollutant load assessments and best management practices (BMPs). Developing, calibrating and validating these models require a number of critical decisions that will influence the ability of the model to represent real world conditions. Understanding how these decisions influence model performance is crucial, especially when making science‐based policy decisions. This study used the Soil and Water Assessment Tool (SWAT) model in West Lake Erie Basin (WLEB) to examine the influence of several of these decisions on hydrological processes and streamflow simulations. Specifically, this study addressed the following objectives (1) demonstrate the importance of considering intra‐watershed processes during model development, (2) compare and evaluated spatial calibration versus calibration at outlet and (3) evaluate parameter transfers across temporal and spatial scales. A coarser resolution (HUC‐12) model and a finer resolution model (NHDPlus model) were used to support the objectives. Results showed that knowledge of watershed characteristics and intra‐watershed processes are critical to produced accurate and realistic hydrologic simulations. The spatial calibration strategy produced better results compared to outlet calibration strategy and provided more confidence. Transferring parameter values across spatial scales (i.e. from coarser resolution model to finer resolution model) needs additional fine tuning to produce realistic results. Transferring parameters across temporal scales (i.e. from monthly to yearly and daily time‐steps) performed well with a similar spatial resolution model. Furthermore, this study shows that relying solely on quantitative statistics without considering additional information can produce good but unrealistic simulations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
185.
The Jagged Rocks complex is the eroded remnant of the plumbing systems of closely spaced monogenetic alkaline volcanic centres in the southern Hopi Buttes Volcanic Field (AZ, USA). It contains different clinopyroxene populations with distinctive textures and geochemical patterns. In the Northwestern part of the complex, which exposes the best developed system of conduits, most of the clinopyroxenes consist of large- to medium-sized resorbed cores overgrown by euhedral rims (type 1), small moderately resorbed greenish cores with the same overgrown rims (type 2), and phlogopite as an accessory phase. By contrast, in the Southern part of the complex the majority of clinopyroxenes are euhedral with oscillatory zonation (type 3) and are accompanied by minor euhedral olivine. The differences between these mineral assemblages indicate a composite history of crystallization and magmatic evolution for the two parts of the complex, governed by different mechanisms and ascent patterns from a single source at ~ 50 km depth (16 kbar). The Northwest system preserves a high-pressure assemblage that cooled rapidly from near-liquidus conditions, suggesting direct ascent from the source to the surface at high-to-moderate transport rates (average ~ 1.25 m/s). By contrast, the Southern system represents magma that advanced upward at much lower overall ascent rates, stalling at times to form small-volume mid-crustal storage zones (e.g., sills or a network of sheeted intrusions); this allowed the re-equilibration of the magma at lower pressure (~ 30 km; 8 kbar), and led to nucleation and growth of euhedral clinopyroxene and olivine phenocrysts.  相似文献   
186.
Vertical hydraulic gradient is commonly measured in rivers, lakes, and streams for studies of groundwater–surface water interaction. While a number of methods with subtle differences have been applied, these methods can generally be separated into two categories; measuring surface water elevation and pressure in the subsurface separately or making direct measurements of the head difference with a manometer. Making separate head measurements allows for the use of electronic pressure sensors, providing large datasets that are particularly useful when the vertical hydraulic gradient fluctuates over time. On the other hand, using a manometer-based method provides an easier and more rapid measurement with a simpler computation to calculate the vertical hydraulic gradient. In this study, we evaluated a wet/wet differential pressure sensor for use in measuring vertical hydraulic gradient. This approach combines the advantage of high-temporal frequency measurements obtained with instrumented piezometers with the simplicity and reduced potential for human-induced error obtained with a manometer board method. Our results showed that the wet/wet differential pressure sensor provided results comparable to more traditional methods, making it an acceptable method for future use.  相似文献   
187.
Dissolved aluminium (Al) is generally at low concentrations in neutral freshwater due to its insolubility. However, a fall in pH resulting from acid deposition and mining alters the mobility of Al and so entry to adjacent neutral waters. The present study examines the environmental behaviour, cell-associated surface adsorption/absorption and toxicity of Al at neutral pH to the alga Chlamydomonas gigantea in the presence and absence of the key Al-binding ligand silica. We then examined transfer of Al from C. gigantea to the planktonic crustacean Daphnia pulex. Finally, the effect of Al on the elemental composition (and hence nutritional value) of the two organisms was compared to unexposed controls. C. gigantea increased the amount of Al in the algal culture medium. Binding of Al to extracellular glycoprotein is probably the reason why only one-third of the biosorbed Al was absorbed (accumulated) by C. gigantea. Aluminium concentrations between 50 and 500 μg l−1 reduced growth of C. gigantea at 16 days exposure to the metal. Silica reduced biosorption, accumulation and toxicity of Al by C. gigantea. The concentration of Al in D. pulex fed Al-contaminated C. gigantea for 16 days did not differ from those fed alga grown in the absence of added Al. C. gigantea contaminated with Al contained less sulphur, magnesium, potassium and sodium although only sulphur fell in D. pulex subsequently fed the contaminated alga. Chloride, calcium, iron and silicon were significantly higher in D. pulex.  相似文献   
188.
Lacustrine sediments of the Wilson Creek Formation in the Mono Basin, California, record a paleomagnetic field excursion constrained by 14C and 40Ar/39Ar geochronology to have occurred within the last 50 ka. However, 14C and 40Ar/39Ar ages are discordant, making it difficult to distinguish which of two possible excursions during this period, the Mono Lake or Laschamp, is recorded in the Mono Basin. New 40Ar/39Ar age determinations from sanidine, as well as the first biotite and obsidian ages, for three of the nineteen rhyolitic ashes intercalated with these sediments are presented and compared to previous 14C and 40Ar/39Ar data sets. Although the sanidine ages of the three ashes are stratigraphically consistent with each other and previously determined 40Ar/39Ar ages for other ashes in the Wilson Creek Formation, each is significantly older than 14C ages obtained from stratigraphically equivalent beds, relative paleointensity field correlations, oxygen isotope records, and glacial histories. These data indicate an absence of juvenile, eruptive crystals and most likely reflect the incorporation of crystals from older volcanic centers or underlying sediment. We examine the strengths and weaknesses of all available geochronologic data for the section exposed at Wilson Creek to arrive at an internally consistent set of age constraints. Using these constraints we propose two new relative paleointensity correlations for the section, both of which indicate that the excursion recorded in the Mono Basin occurred at ~30–34 ka on the Greenland Ice Sheet Project 2 (GISP2) ice core time scale.  相似文献   
189.
190.
Increasing efforts to implement marine protected areas (MPAs) as a means of managing marine ecosystems have created a need for evaluating potential spatial management plans. Almost all marine populations are metapopulations, connected reproductively by the dispersal of pelagic larvae. Models of marine population dynamics must account for larval connectivity, but despite recent advances connectivity patterns are still poorly understood. To allow more informed decision making when complete information on dispersal is lacking, we have developed a method based on geographic information systems (GIS) for representing larval dispersal distributions based on bathymetry and typical flows in the coastal ocean. These distributions reflect (1) generally greater flow in directions along, rather than across, lines of constant bathymetry and (2) lesser flow in shallow near-shore waters. We demonstrate how to parameterize this two-dimensional method for depicting larval dispersal based on comparisons to local oceanographic data. We then compare the predictions of the two-dimensional method to those of a simpler one-dimensional alternative in a population model used to evaluate proposed MPAs along the coast of central California. The method produces reasonable larval dispersal patterns and appears to include the effects of bathymetry on population dynamics better than commonly used one-dimensional methods and without requiring the significantly greater investment of developing particle-tracking circulation models. An important advantage of a two-dimensional approach is more realistic portrayal of the dependence of population persistence on the cross-shelf dimension of available habitat.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号