Tsunami runup and drawdown can cause liquefaction failure of coastal fine sand slopes due to the generation of high excess pore pressure and the reduction of the effective over burden pressure during the drawdown. The region immediately seaward of the initial shoreline is the most susceptible to tsunami-induced liquefaction failure because the water level drops significantly below the still water level during the set down phase of the drawdown. The objective of this work is to develop and validate a numerical model to assess the potential for tsunami-induced liquefaction failure of coastal sandy slopes. The transient pressure distribution acting on the slope due to wave runup and drawdown is computed by solving for the hybrid Boussinesq—nonlinear shallow water equations using a finite volume method. The subsurface pore water pressure and deformation fields are solved simultaneously using a finite element method. Two different soil constitutive models have been examined: a linear elastic model and a non-associative Mohr–Coulomb model. The numerical methods are validated by comparing the results with analytical models, and with experimental measurements from a large-scale laboratory study of breaking solitary waves over a planar fine sand beach. Good comparisons were observed from both the analytical and experimental validation studies. Numerical case studies are shown for a full-scale simulation of a 10-m solitary wave over a 1:15 and 1:5 sloped fine sand beach. The results show that the soil near the bed surface, particularly along the seepage face, is at risk to liquefaction failure. The depth of the seepage face increases and the width of the seepage face decreases with increasing bed slope. The rate of bed surface loading and unloading due to wave runup and drawdown, respectively, also increases with increasing bed slope. Consequently, the case with the steeper slope is more susceptible to liquefaction failure due to the higher hydraulic gradient. The analysis also suggests that the results are strongly influenced by the soil permeability and relative compressibility between the pore fluid and solid skeleton, and that a coupled solid/fluid formulation is needed for the soil solver. Finally, the results show the drawdown pore pressure response is strongly influenced by nonlinear material behavior for the full-scale simulation. 相似文献
Eutrophication in marine ecosystems is an important problem that requires an accurate assessment. Although Basque estuaries (northern Spain) have historically been under high anthropogenic pressure, no specific eutrophication assessment method had been applied in these waters. In this study, a method employed in the Basque Country (BC) to assess the ??risk of failing to achieve good ecological status?? under the requirements of the Water Framework Directive (WFD) was adapted to exclusively assess the risk of eutrophication. This method is based on the driver?Cpressure?Cstate?Cimpact?Cresponse approach. The results from this method (called WFD-BC method) were compared to the results from Assessment of Estuarine Trophic Status (ASSETS; a specific method developed in the US to assess estuarine trophic status in a pressure?Cstate?Cresponse approach). The nutrient pressure was better characterized with the WFD-BC method due to the local hydrographic conditions (i.e., small and river-influenced estuaries) that were not well accommodated by the ASSETS method. In contrast, the WFD-BC results for assessment of state generally reflected worse conditions than the results from the ASSETS method due to the different indicators employed and the way these are integrated in the WFD-BC method. Overall, the WFD-BC method showed a good potential to assess eutrophication. However, to improve it, a lower weight for the benthos and macroalgae is recommended for evaluating state. 相似文献
The objectives of this study are to investigate the third order accuracy and linear stability of the lattice Boltzmann method (LBM) with the two-relaxation-time collision operator (LTRT) for the advection–diffusion equation (ADE) and compare the LTRT model with the single-relaxation-time (LBGK) model. While the LBGK has been used extensively, the LTRT appears to be a more flexible model because it uses two relaxation times. The extra relaxation time can be used to improve solution accuracy and/or stability. This study conducts a third order Chapman–Enskog expansion on the LTRT to recover the macroscopic differential equations up to the third order. The dependency of third order terms on the relaxation times is obtained for different types of equilibrium distribution functions (EDFs) and lattices. By selecting proper relaxation times, the numerical dispersion can be significantly reduced. Furthermore, to improve solution accuracy, this study introduces pseudo-velocities to develop new EDFs to reduce the second order numerical diffusion. This study also derives stability domains based on the lattice Peclet number and Courant number for different types of lattices, EDFs and different values of relaxation times, while conducting linear stability analysis on the LTRT. Numerical examples demonstrate the improvement of the LTRT solution accuracy and stability by selecting proper relaxation times, lattice Peclet number and Courant number. 相似文献
The European Water Framework Directive (WFD) establishes a framework for the protection and improvement of estuarine (transitional) and coastal waters, attempting to achieve good water status by 2015; this includes, within the assessment, biological and chemical elements. The European Commission has proposed a list of priority dangerous substances (including metals such as Cd, Hg, Ni and Pb), with the corresponding list of environmental quality standards (EQS), to assess chemical status, but only for waters. In this contribution, a long-term (1995–2007) dataset of transitional and coastal water and sediment trace elements concentrations, from the Basque Country (northern Spain), has been used to investigate the response of these systems to water treatment programmes. Moreover, the approach proposed in the WFD, for assessing water chemical status (the ‘one out, all out’ approach), is compared with the integration of water and sediment data, into a unique assessment. For this exercise, background levels are used as reference conditions, identifying the boundary between high and good chemical status. EQS are used as the boundary between good and moderate chemical status. This contribution reveals that the first approach can lead to misclassification, with the second approach representing the pattern shown by the long-term data trends. Finally, the management implications, using each approach are discussed. 相似文献
Geomaterials such as soils and rocks can exhibit inherent anisotropy due to the preferred orientation of mineral grains and/or cracks. They can also be partially saturated with multiple types of fluids occupying the pore space. The anisotropic and unsaturated behaviors of geomaterials can be highly interdependent. Experimental studies have shown that the elastic parameters of rocks evolve with saturation. The effect of saturation has also been shown to differ between directions in transversely isotropic clay rock. This gives rise to saturation-dependent stiffness anisotropy. Similarly, permeability anisotropy can also be saturation-dependent. In this study, constitutive equations accommodating saturation-dependent stiffness and hydraulic anisotropy are presented. A linear function is used to describe the relationship between the elastic parameters and saturation, while the relative permeability–saturation relationship is characterized with a log-linear function. These equations are implemented into a hydromechanical framework to investigate the effects of saturation-dependent properties on the shrinkage behavior of clay rocks. Numerical simulations are presented to demonstrate the role of saturation-dependent stiffness and hydraulic anisotropy in shrinkage behavior. The results highlight that strain anisotropy and time evolution of pore pressures are substantially influenced by saturation-dependent stiffness and hydraulic anisotropy.
Many clay rocks have distinct bedding planes. Experimental studies have shown that their mechanical properties evolve with the degree of saturation (DOS), often with higher stiffness and strength after drying. For transversely isotropic rocks, the effects of saturation can differ between the bed-normal (BN) and bed-parallel (BP) directions, which gives rise to saturation-dependent stiffness and strength anisotropy. Accurate prediction of the mechanical behavior of clay rocks under partially saturated conditions requires numerical models that can capture the evolving elastic and plastic anisotropy with DOS. In this study, we present an anisotropy framework for coupled solid deformation-fluid flow in unsaturated elastoplastic media. We incorporate saturation-dependent strength anisotropy into an anisotropic modified Cam-Clay (MCC) model and consider the evolving anisotropy in both the elastic and plastic responses. The model was calibrated using experimental data from triaxial tests to demonstrate its capability in capturing strength anisotropy at various levels of saturation. Through numerical simulations, we demonstrate the role of evolving stiffness and strength anisotropy in the mechanical behavior of clay rocks. Plane strain simulations of triaxial compression tests were also conducted to demonstrate the impacts of material anisotropy and DOS on the mechanical and fluid flow responses. 相似文献
The European Water Framework Directive provides a challenge in the development of new and accurate methodologies. It addresses assessment of Ecological Quality Status within European rivers, lakes, groundwaters, estuaries and coasts. Although this directive is simple and flexible in its concept, it is necessary to develop an approach based upon scientific knowledge; however, at the same time it should be as simple as possible, in order to achieve both requirements and comparability of results throughout European waters. This contribution presents the first methodological approach to the problem, as used for estuaries and coasts of the Basque Country (northern Spain), in: selecting typologies and reference conditions; determining biological quality and ecological status; and identifying some problems in implementing the WFD. As such, the present paper could serve as the basis for a discussion document for other regions and countries, throughout Europe. 相似文献
Shale is a highly heterogeneous material across multiple scales. A typical shale consists of nanometer-scale pores and minerals mixed with macroscale fractures and particles of varying size. High-resolution imaging is crucial for characterizing the composition and microstructure of this rock. However, it is generally not feasible to image a large sample of shale at a high resolution over a large field of view (FOV), thus limiting a full characterization of the microstructure of this material. We present a stochastic framework based on multiple-point statistics that uses high-resolution training images to enhance low-resolution images obtained over a large FOV. We demonstrate the approach using X-ray micro-tomography images of organic-rich Woodford shale obtained at two different resolutions and FOV. Results show that the proposed technique can generate realistic high-resolution images of the microstructure of shale over a large FOV. 相似文献