首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   373篇
  免费   18篇
  国内免费   6篇
测绘学   7篇
大气科学   24篇
地球物理   94篇
地质学   107篇
海洋学   25篇
天文学   104篇
自然地理   36篇
  2022年   1篇
  2021年   4篇
  2020年   4篇
  2019年   9篇
  2018年   7篇
  2017年   7篇
  2016年   16篇
  2015年   13篇
  2014年   10篇
  2013年   21篇
  2012年   14篇
  2011年   24篇
  2010年   20篇
  2009年   24篇
  2008年   13篇
  2007年   27篇
  2006年   21篇
  2005年   13篇
  2004年   14篇
  2003年   10篇
  2002年   14篇
  2001年   6篇
  2000年   6篇
  1999年   5篇
  1998年   12篇
  1997年   5篇
  1996年   2篇
  1995年   3篇
  1993年   4篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   3篇
  1985年   8篇
  1984年   6篇
  1983年   5篇
  1982年   8篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1976年   3篇
  1975年   4篇
  1974年   1篇
  1973年   5篇
  1972年   3篇
  1970年   1篇
  1969年   2篇
  1966年   1篇
排序方式: 共有397条查询结果,搜索用时 15 毫秒
91.
The heat capacity of xenotime YPO4(c) was measured by adiabatic calorimetry at 4.78–348.07 K. Our experimental and literature data on H 0(T)-H 0(298.15 K) of Y orthophosphate were utilized to derive the C p 0(T) function of xenotime at 0–1600 K, which was then used to calculate the values of thermodynamic functions: entropy, enthalpy change, and reduced Gibbs energy. These functions assume the following values at 298.15 K: C p 0 (298.15 K) = 99.27 ± 0.02 J K−1 mol−1, S 0(298.15 K) = 93.86 ± 0.08 J K−1 mol−1, H 0(298.15 K) − H 0(0) = 15.944 ± 0.005 kJ mol−1, Φ0(298.15 K) = 40.38 ± 0.08 J K−1 mol−1. The value of the free energy of formation Δ f G 0(YPO4, 298.15 K) is −1867.9 ± 1.7 kJ mol−1.  相似文献   
92.
A consistent theory of excitation, stabilization, and propagation of electromagnetic oscillations in a relativistic one-dimensional electron-positron plasma flowing along curved magnetic field lines is presented. It is shown that in such a medium which is typical of the magnetosphere of a neutron star there exist unstable natural modes of oscillations. Nonlinear saturation of the instability leads to an effective energy conversion into transverse oscillations capable of leaving the magnetosphere of a pulsar. The polarization spectrum and the directivity pattern of generated radiation are determined. A comparison with observations has shown that the theory makes it possible to explain practically all the basic characteristics of observed pulsar radio emission.  相似文献   
93.
Mountain building and landscape evolution are controlled by interactions between river dynamics and tectonic forces. Such interactions have been extensively studied, however a quantitative evaluation of tectonic/geomorphic feedbacks, which is imperative for understanding sediments routing within orogens and fold‐and‐thrust belts, remains to be undertaken. Here, we employ numerical simulations to assess the conditions of uplift and river incision necessary to deflect an antecedent drainage network during the growth of one, or several, folds. We propose that a partitioning of the river network into internal (endorheic) and longitudinal drainage arises as a result of lithological differences within the deforming crustal sedimentary cover. Using examples from the Zagros Fold Belt (ZFB), we show that drainage patterns can be linked to the non‐dimensional incision ratio R between successive lithological layers, corresponding to the ratio between their relative erodibilities or incision coefficients. Transverse drainage networks develop for uplift rates smaller than 0.8 mm yr?1 and low incision ratios (?10 < R < 10). Intermediate drainage networks are obtained for uplift rates up to 2 mm yr?1 and large incision ratios (R > 20). Parallel drainage networks and the formation of sedimentary basins occur for large values of incision ratio (R > 20) and uplift rates between 1 and 2 mm yr?1. These results have implications for predicting the distribution of sediment depocenters in fold‐and‐thrust belts, which can be of direct economic interest for hydrocarbon exploration. They also put better constraints on the fluvial and geomorphic responses to fold growth induced by crustal‐scale tectonics. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
94.
The acceleration of relativistic particles is considered during their intersection with hydromagnetic shock fronts in the presence of randomly distributed large-scale magnetic fields. In a series of astronomical objects, the Larmor radius of the relativistic particles exceeds the width of the shock front. In this case there is a change in the adiabatic invariant which results in an increase in the energy of the particle when it crosses the front in any direction. We have proved that the adiabatic part of the energy change will be partially or completely compensated by its reverse change in the weaker regions of the magnetic field. The acceleration mechanism considered is found to be more effective than the Fermi mechanism.If the mean free path of the particles is much less than the distance between the shock fronts, magnetic small-scale fluctuations cause further scattering of the particles. In this case the particles following and crossing the front will return to it. After reversed crossing, a fraction of the particles-defined by the ratio of the front speed to the particle velocity or of the distance between the fronts to the free path — will not return to the front. It is proved that for both large and small free paths the rates at which the particle gains energy are nearly the same.  相似文献   
95.
Hard rock seismic exploration normally has to deal with rather complex geological environments. These types of environments are usually characterized by a large number of local heterogeneity (e.g., faults, fracture zones, and steeply dipping interfaces). The seismic data from such environments often have a poor signal‐to‐noise ratio because of the complexity of hard rock geology. To be able to obtain reliable images of subsurface structures in such geological conditions, processing algorithms that are capable of handling seismic data with a low signal‐to‐noise ratio are required for a reflection seismic exploration. In this paper, we describe a modification of the 3D Kirchhoff post‐stack migration algorithm that utilizes coherency attributes obtained by the diffraction imaging algorithm in 3D to steer the main Kirchhoff summation. The application to a 3D synthetic model shows the stability of the presented steered migration to the presence of high level of the random noise. A test on the 3D seismic volume, acquired on a mine site located in Western Australia, reveals the capability of the approach to image steep and sharp objects such as fracture and fault zones and lateral heterogeneity.  相似文献   
96.
97.
98.
Post‐Late Paleozoic Collisional Framework of Southern Great Altai   总被引:1,自引:0,他引:1  
We outline the post-Late Paleozoic (latest Permian to Cenozoic) collisional framework of the southern Great Altai (Central Asia) produced by the convergence between the Tuva-Mongolia and Junggar continental terranes (microplates). The collisional structures in the region classified on the basis of their geometry and deformation style, dynamic metamorphism, and compositions of tectonites are of three main types: (1) mosaic terranes made up of large weakly deformed Paleozoic blocks separated by younger shear zones; (2) contractional deformation systems involving structures formed in post-Late Paleozoic time, parallel faults oriented along collisional deformation systems, and relict lenses of Paleozoic orogenic complexes; and (3) isolated zones of dynamic metamorphism composed mostly of collisional tectonites different in composition and alteration grade.  相似文献   
99.
The 3D hydrodynamic Model for Applications at Regional Scale (MARS3D) was coupled with a biogeochemical model developed with the Ecological Modular Mechanistic Modelling (Eco3M) numerical tool. The three-dimensional coupled model was applied to the NW Mediterranean Sea to study the dynamics of the key biogeochemical processes in the area in relation with hydrodynamic constraints. In particular, we focused on the temporal and spatial variability of intracellular contents of living and non-living compartments. The conceptual scheme of the biogeochemical model accounts for the complex food web of the NW Mediterranean Sea (34 state variables), using flexible plankton stoichiometry. We used mechanistic formulations to describe most of the biogeochemical processes involved in the dynamics of marine pelagic ecosystems. Simulations covered the period from September 1, 2009 to January 31, 2011 (17 months), which enabled comparison of model outputs with situ measurements made during two oceanographic cruises in the region (Costeau-4: April 27–May 2, 2010 and Costeau-6: January 23–January 27, 2011).  相似文献   
100.
We study the relationship between changes in equatorial stratification and low frequency El Niño/Southern Oscillation (ENSO) amplitude modulation in a coupled general circulation model (CGCM) that uses an anomaly coupling strategy to prevent climate drifts in the mean state. The stratification is intensified at upper levels in the western and central equatorial Pacific during periods of high ENSO amplitude. Furthermore, changes in equatorial stratification are connected with subsurface temperature anomalies originating from the central south tropical Pacific. The correlation analysis of ocean temperature anomalies against an index for the ENSO modulation supports the hypothesis of the existence of an oceanic “tunnel” that connects the south tropical Pacific to the equatorial wave guide. Further analysis of the wind stress projection coefficient onto the oceanic baroclinic modes suggests that the low frequency modulation of ENSO amplitude is associated with a significant contribution of higher-order modes in the western and central equatorial Pacific. In the light of these results, we suggest that, in the CGCM, change in the baroclinic mode energy distribution associated with low frequency ENSO amplitude modulation have its source in the central south tropical Pacific.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号