首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   373篇
  免费   18篇
  国内免费   6篇
测绘学   7篇
大气科学   24篇
地球物理   94篇
地质学   107篇
海洋学   25篇
天文学   104篇
自然地理   36篇
  2022年   1篇
  2021年   4篇
  2020年   4篇
  2019年   9篇
  2018年   7篇
  2017年   7篇
  2016年   16篇
  2015年   13篇
  2014年   10篇
  2013年   21篇
  2012年   14篇
  2011年   24篇
  2010年   20篇
  2009年   24篇
  2008年   13篇
  2007年   27篇
  2006年   21篇
  2005年   13篇
  2004年   14篇
  2003年   10篇
  2002年   14篇
  2001年   6篇
  2000年   6篇
  1999年   5篇
  1998年   12篇
  1997年   5篇
  1996年   2篇
  1995年   3篇
  1993年   4篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   3篇
  1985年   8篇
  1984年   6篇
  1983年   5篇
  1982年   8篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1976年   3篇
  1975年   4篇
  1974年   1篇
  1973年   5篇
  1972年   3篇
  1970年   1篇
  1969年   2篇
  1966年   1篇
排序方式: 共有397条查询结果,搜索用时 312 毫秒
71.
72.
Clogging of water wells by iron-hydroxide incrustations due to mixing of anoxic and oxic groundwater is a common well-ageing problem. The relation between well operation (on and off), the spatial and temporal variations in hydrochemistry outside and inside a supply well, and the distribution of clogging iron-hydroxides were studied in an artificial recharge well field in the Netherlands. Camera inspection, high-resolution multi-level water sampling outside the well and detailed in-well pH/EC/O2 profiles revealed remarkable patterns. During pumping, the top of the upper well screen abstracted oxic filtrate, although the larger part of the in-well water column was anoxic. The column rapidly turned oxic after shutdown due to a downward short-circuiting of oxic water via the well. Within 15 d it became anoxic due to the slow advance of anoxic lake filtrate created by local changes in flow direction as the neighboring wells continued to pump. Severe clogging occurred where the oxic filtrate entered the well, while half-clogging of the upper well screen occurred due to less inflow of oxic filtrate on the lake side. Transport of iron flocs and bacterial slimes after shutdown seemed to clog the lower part of the well screen. Frequent on/off switching should be avoided in iron-clogged wells.  相似文献   
73.
his study presents the first and detail field investigations of exposed deposits at proximal sections of the Barombi Mbo Maar (BMM), NE Mt Cameroon, with the aim of documenting its past activity, providing insight on the stratigraphic distribution, depositional process, and evolution of the eruptive sequences during its formation. Field evidence reveals that the BMM deposit is about 126m thick, of which about 20m is buried lowermost under the lake level and covered by vegetation. Based on variation in pyroclastic facies within the deposit, it can be divided into three main stratigraphic units: U1, U2 and U3. Interpretation of these features indicates that U1 consists of alternating lapilli-ash-lapilli beds series, in which fallout derived individual lapilli-rich beds are demarcated by surges deposits made up of thin, fine-grained and consolidated ash-beds that are well-defined, well-sorted and laterally continuous in outcrop scale. U2, a pyroclastic fall-derived unit, shows crudely lenticular stratified scoriaceous layers, in which many fluidal and spindle bombs-rich lapilli-beds are separated by very thin, coarse-vesiculatedash-beds, overlain by a mantle xenolith- and accidental lithic-rich explosive breccia, and massive lapilli tuff and lapillistone. U3 displays a series of surges and pyroclastic fall layers. Emplacement processes were largely controlled by fallout deposition and turbulent diluted pyroclastic density currents under “dry” and “wet” conditions. The eruptive activity evolved in a series of initial phreatic eruptions, which gradually became phreatomagmatic, followed by a phreato-Strombolian and a violent phreatomagmatic fragmentation. A relatively long-time break, demonstrated by a paleosol between U2 and U3, would have permitted the feeding of the root zone or the prominent crater by the water that sustained the next eruptive episode, dominated by subsequent phreatomagmatic eruptions. These preliminary results require complementary studies, such as geochemistry, for a better understanding of the changes in the eruptive styles, and to develop more constraints on the maar’s polygenetic origin.  相似文献   
74.
Boris Filippov 《Solar physics》2013,283(2):401-411
A hyperbolic flux-tube configuration containing a null point below the flux rope is considered as a pre-eruptive state of coronal mass ejections that start simultaneously with flares. We demonstrate that this configuration is unstable and cannot exist for a long time in the solar corona. The inference follows from general equilibrium conditions and from analyzing simple models of the flux-rope equilibrium. A direct consequence of the stable flux-rope equilibrium in the corona are separatrices in the horizontal-field distribution in the chromosphere. They can be recognized as specific “herring-bone structures” in a chromospheric fibril pattern.  相似文献   
75.
In the years 2001–2003, we accomplished the experimental phase of the project CEMES by collecting long-period magnetotelluric data at positions of eleven permanent geomagnetic observatories situated within few hundreds kilometers along the south-west margin of the East European Craton. Five teams were engaged in estimating independently the magnetotelluric responses by using different data processing procedures. The conductance distributions at the depths of the upper mantle have been derived individually beneath each observatory. By averaging the individual cross-sections, we have designed the final model of the geoelectrical structure of the upper mantle beneath the CEMES region. The results indicate systematic trends in the deep electrical structure of the two European tectonic plates and give evidence that the electrical structure of the upper mantle differs between the East European Craton and the Phanerozoic plate of west Europe, with a separating transition zone that generally coincides with the Trans-European Suture Zone.  相似文献   
76.
77.
Despite the recent recognition of Mount Etna as a periodically violently explosive volcano, the hazards from various types of pyroclastic density currents (PDCs) have until now received virtually no attention at this volcano. Large-scale pyroclastic flows last occurred during the caldera-forming Ellittico eruptions, 15–16 ka ago, and the risk of them occurring in the near future is negligible. However, minor PDCs can affect much of the summit area and portions of the upper flanks of the volcano. During the past ~ 20 years, small pyroclastic flows or base-surge-like vapor and ash clouds have occurred in at least 8 cases during summit eruptions of Etna. Four different mechanisms of PDC generation have been identified during these events: (1) collapse of pyroclastic fountains (as in 2000 and possibly in 1986); (2) phreatomagmatic explosions resulting from mixing of lava with wet rock (2006); (3) phreatomagmatic explosions resulting from mixing of lava with thick snow (2007); (4) disintegration of the unstable flanks of a lava dome-like structure growing over the rim of one of the summit craters (1999). All of these recent PDCs were of a rather minor extent (maximum runout lengths were about 1.5 km in November 2006 and March 2007) and thus they represented no threat for populated areas and human property around the volcano. Yet, events of this type pose a significant threat to the lives of people visiting the summit area of Etna, and areas in a radius of 2 km from the summit craters should be off-limits anytime an event capable of producing similar PDCs occurs. The most likely source of further PDCs in the near future is the Southeast Crater, the youngest, most active and most unstable of the four summit craters of Etna, where 6 of the 8 documented recent PDCs originated. It is likely that similar hazards exist in a number of volcanic settings elsewhere, especially at snow- or glacier-covered volcanoes and on volcano slopes strongly affected by hydrothermal alteration.  相似文献   
78.
One of the best-studied volcanoes of the world, Mt. Etna in Sicily, repeatedly exhibits eruptive scenarios that depart from the behavior commonly considered typical for this volcano. Episodes of intense explosive activity, pyroclastic flows, dome growth and cone collapse pose a variety of previously underestimated threats to human lives in the summit area of the volcano. However, retrospective analysis of these events shows that they were likely caused by the same very sets of premises and starting conditions as “normal” eruptions, yet combined in an unexpected, probably unique, way. To cope with such unexpected consequences, we involve an approach of artificial intelligence developed specially for needs of the geosciences, the event bush. Scenarios inferred from the event bush fit the observed ones and allow to foresee other low-probability events that may occur at the volcano. Application of the event bush provides a more impartial vision of volcanic phenomena and may serve as an intermediary between expert knowledge and numerical assessment, e.g., by means of Bayesian Belief Networks.  相似文献   
79.
—The feasibility of modeling elastic properties of a fluid-saturated sand-clay mixture rock is analyzed by assuming that the rock is composed of macroscopic regions of sand and clay. The elastic properties of such a composite rock are computed using two alternative schemes.¶The first scheme, which we call the composite Gassmann (CG) scheme, uses Gassmann equations to compute elastic moduli of the saturated sand and clay from their respective dry moduli. The effective elastic moduli of the fluid-saturated composite rock are then computed by applying one of the mixing laws commonly used to estimate elastic properties of composite materials.¶In the second scheme which we call the Berryman-Milton scheme, the elastic moduli of the dry composite rock matrix are computed from the moduli of dry sand and clay matrices using the same composite mixing law used in the first scheme. Next, the saturated composite rock moduli are computed using the equations of Brown and Korringa, which, together with the expressions for the coefficients derived by Berryman and Milton, provide an extension of Gassmann equations to rocks with a heterogeneous solid matrix.¶For both schemes, the moduli of the dry homogeneous sand and clay matrices are assumed to obey the Krief’s velocity-porosity relationship. As a mixing law we use the self-consistent coherent potential approximation proposed by Berryman.¶The calculated dependence of compressional and shear velocities on porosity and clay content for a given set of parameters using the two schemes depends on the distribution of total porosity between the sand and clay regions. If the distribution of total porosity between sand and clay is relatively uniform, the predictions of the two schemes in the porosity range up to 0.3 are very similar to each other. For higher porosities and medium-to-large clay content the elastic moduli predicted by CG scheme are significantly higher than those predicted by the BM scheme.¶This difference is explained by the fact that the BM model predicts the fully relaxed moduli, wherein the fluid can move freely between sand and clay regions. In contrast, the CG scheme predicts the no-flow or unrelaxed moduli. Our analysis reveals that due to the extremely low permeability of clays, at seismic and higher frequencies the fluid has no time to move between sand and clay regions. Thus, the CG scheme is more appropriate for clay-rich rocks.  相似文献   
80.
Filippov  Boris  Koutchmy  Serge 《Solar physics》2000,196(2):311-320
A simple geometric model is proposed to explain the recently reported effect of the prolateness of the solar chromosphere. We assume that a specific dynamical part of the solar atmosphere above the 2 Mm level, being a mixture of moving up and down jets of chromospheric matter with the coronal plasma between them, is responsible for the solar prolateness. Due to the dynamic nature of this layer, the magnetic field is considered to play a very important role in the density distribution with the height, guiding the mass flows along the field lines. The difference of the magnetic field topology in the polar and the equatorial regions leads to different heights of the chromospheric limb. Calculations show a satisfactory coincidence with observations when the mean separation between opposite polarity concentrations is about 9 Mm. The possible observational signature of this network in low photospheric and chromospheric layers is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号