首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   338篇
  免费   18篇
  国内免费   6篇
测绘学   6篇
大气科学   20篇
地球物理   86篇
地质学   96篇
海洋学   25篇
天文学   95篇
自然地理   34篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   4篇
  2019年   8篇
  2018年   7篇
  2017年   7篇
  2016年   15篇
  2015年   13篇
  2014年   10篇
  2013年   20篇
  2012年   12篇
  2011年   21篇
  2010年   18篇
  2009年   21篇
  2008年   13篇
  2007年   24篇
  2006年   17篇
  2005年   12篇
  2004年   14篇
  2003年   9篇
  2002年   14篇
  2001年   6篇
  2000年   5篇
  1999年   5篇
  1998年   11篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1993年   4篇
  1992年   1篇
  1990年   1篇
  1989年   3篇
  1986年   3篇
  1985年   7篇
  1984年   5篇
  1983年   5篇
  1982年   9篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1976年   3篇
  1975年   2篇
  1974年   1篇
  1973年   3篇
  1972年   3篇
  1970年   1篇
  1969年   2篇
  1966年   1篇
排序方式: 共有362条查询结果,搜索用时 15 毫秒
151.
Although most rocks are complex multi‐mineralic aggregates, quantitative interpretation workflows usually ignore this complexity and employ Gassmann equation and effective stress laws that assume a micro‐homogeneous (mono‐mineralic) rock. Even though the Gassmann theory and effective stress concepts have been generalized to micro‐inhomogeneous rocks, they are seldom if at all used in practice because they require a greater number of parameters, which are difficult to measure or infer from data. Furthermore, the magnitude of the effect of micro‐heterogeneity on fluid substitution and on effective stress coefficients is poorly understood. In particular, it is an open question whether deviations of the experimentally measurements of the effective stress coefficients for drained and undrained elastic moduli from theoretical predictions can be explained by the effect of micro‐heterogeneity. In an attempt to bridge this gap, we consider an idealized model of a micro‐inhomogeneous medium: a Hashin assemblage of double spherical shells. Each shell consists of a spherical pore surrounded by two concentric spherical layers of two different isotropic minerals. By analyzing the exact solution of this problem, we show that the results are exactly consistent with the equations of Brown and Korringa (which represent an extension of Gassmann's equation to micro‐inhomogeneous media). We also show that the effective stress coefficients for bulk volume α, for porosity n? and for drained and undrained moduli are quite sensitive to the degree of heterogeneity (contrast between the moduli of the two mineral components). For instance, while for micro‐homogeneous rocks the theory gives n? = 1, for strongly micro‐inhomogenous rocks, n? may span a range of values from –∞ to ∞ (depending on the contrast between moduli of inner and outer shells). Furthermore, the effective stress coefficient for pore volume (Biot–Willis coefficient) α can be smaller than the porosity ?. Further studies are required to understand the applicability of the results to realistic rock geometries.  相似文献   
152.
The 29th Research Institute recently published its latest transformation parameters for WGS and PZ 90. Because these tranformation parameter estimates were derived from stations located within Russia, variance-covariance propagation was carried out to study the benefits of a better global distribution of stations. An example that includes two stations in North America is presented. The transformation improves significantly. ? 1999 John Wiley & Sons, Inc.  相似文献   
153.
Total suspended matter was collected along the Yangtze River (Changjiang) and in the East China Sea in April to May and in September 2003, respectively, to study origin and fate of particulate organic nitrogen. Concentrations of particulate organic carbon (POC), nitrogen (PN) and hydrolyzable particulate amino acids (PAA; d- and l-enantiomers) were higher in the Yangtze Estuary than in the river and decreased offshore towards the shelf edge. In the coastal area, higher values of PAA were observed in the surface layer than in the bottom water. Stable carbon isotope ratios (δ13C) of POC increased from − 24.4‰ in the river to values around − 21‰ on the East China Sea Shelf. Dominant amino acids were aspartic acid + aspartine (Asx), glutamic acid + glutamine (Glx), glycine, alanine and serine. The proportions of Asx, Glx and isoleucine were higher in the marine than in the riverine samples contrary to the distributions of glycine, alanine, threonine and arginine. The proportions of d-amino acids were highest in the riverine suspended organic matter (6% of PAA) decreasing towards the shelf edge (1.5% of PAA). d-arginine, not reported in natural aquatic samples so far, was the most abundant d-amino acid in the river. The amino acid composition of the particulate organic matter (POM) in the Yangtze River indicates an advanced stage of degradation of POM. Highly degraded organic matter from soils is probably a main source of POM in the Yangtze River, but the relatively high δ13C values and low C/N ratios (7.7 ± 1.6) also indicate contribution from anthropogenic sources. The degraded riverine material was a dominant organic matter source in the estuary, where aquatic primary production had only a small overall contribution. In the East China Sea, gradual settling of riverine organic matter and the addition of fresher phytoplankton impacted the amino acid composition and δ13C values, and on the outer shelf relatively fresh phytoplankton-derived organic matter dominated.  相似文献   
154.
The quasi-normal scale elimination (QNSE) is an analytical spectral theory of turbulence based upon a successive ensemble averaging of the velocity and temperature modes over the smallest scales of motion and calculating corresponding eddy viscosity and eddy diffusivity. By extending the process of successive ensemble averaging to the turbulence macroscale one eliminates all fluctuating scales and arrives at models analogous to the conventional Reynolds stress closures. The scale dependency embedded in the QNSE method reflects contributions from different processes on different scales. Two of the most important processes in stably stratified turbulence, internal wave propagation and flow anisotropization, are explicitly accounted for in the QNSE formalism. For relatively weak stratification, the theory becomes amenable to analytical processing revealing just how increasing stratification modifies the flow field via growing anisotropy and gravity wave radiation. The QNSE theory yields the dispersion relation for internal waves in the presence of turbulence and provides a theoretical reasoning for the Gargett et al. (J Phys Oceanogr 11:1258–1271, 1981) scaling of the vertical shear spectrum. In addition, it shows that the internal wave breaking and flow anisotropization void the notion of the critical Richardson number at which turbulence is fully suppressed. The isopycnal and diapycnal viscosities and diffusivities can be expressed in the form of the Richardson diffusion laws thus providing a theoretical framework for the Okubo dispersion diagrams. Transitions in the spectral slopes can be associated with the turbulence- and wave-dominated ranges and have direct implications for the transport processes. We show that only quasi-isotropic, turbulence-dominated scales contribute to the diapycnal diffusivity. On larger, buoyancy dominated scales, the diapycnal diffusivity becomes scale independent. This result underscores the well-known fact that waves can only transfer momentum but not a scalar and sheds a new light upon the Ellison–Britter–Osborn mixing model. It also provides a general framework for separation of the effects of turbulence and waves even if they act on the same spatial and temporal scales. The QNSE theory-based turbulence models have been tested in various applications and demonstrated reliable performance. It is suggested that these models present a viable alternative to conventional Reynolds stress closures.  相似文献   
155.
We present and interpret results of petrographic, mineralogical, and chemical analyses of the 1511 m deep ICDP Yaxcopoil‐1 (Yax‐1) drill core, with special emphasis on the impactite units. Using numerical model calculations of the formation, excavation, and dynamic modification of the Chicxulub crater, constrained by laboratory data, a model of the origin and emplacement of the impact formations of Yax‐1 and of the impact structure as a whole is derived. The lower part of Yax‐1 is formed by displaced Cretaceous target rocks (610 m thick), while the upper part comprises six suevite‐type allochthonous breccia units (100 m thick). From the texture and composition of these lithological units and from numerical model calculations, we were able to link the seven distinct impact‐induced units of Yax‐1 to the corresponding successive phases of the crater formation and modification, which are as follows: 1) transient cavity formation including displacement and deposition of Cretaceous “megablocks;” 2) ground surging and mixing of impact melt and lithic clasts at the base of the ejecta curtain and deposition of the lower suevite right after the formation of the transient cavity; 3) deposition of a thin veneer of melt on top of the lower suevite and lateral transport and brecciation of this melt toward the end of the collapse of the transient cavity (brecciated impact melt rock); 4) collapse of the ejecta plume and deposition of fall‐back material from the lower part of the ejecta plume to form the middle suevite near the end of the dynamic crater modification; 5) continued collapse of the ejecta plume and deposition of the upper suevite; 6) late phase of the collapse and deposition of the lower sorted suevite after interaction with the inward flowing atmosphere; 7) final phase of fall‐back from the highest part of the ejecta plume and settling of melt and solid particles through the reestablished atmosphere to form the upper sorted suevite; and 8) return of the ocean into the crater after some time and minor reworking of the uppermost suevite under aquatic conditions. Our results are compatible with: a) 180 km and 100 km for the diameters of the final crater and the transient cavity of Chicxulub, respectively, as previously proposed by several authors, and b) the interpretation of Chicxulub as a peak‐ring impact basin that is at the transition to a multi‐ring basin.  相似文献   
156.
Regarding new bipolar magnetic regions as sources of flux, we have computed the evolution of the photospheric magnetic field during 1976–1984 and derived the corresponding evolution of the mean line-of-sight field as seen from Earth. We obtained a good, but imperfect, agreement between the observed mean field and the field computed for a nominal choice of flux transport parameters. Also, we determined the response of the computed mean field to variations in the transport parameters and the source properties. The results lead us to regard the mean-field evolution as a random-walk process with dissipation. New eruptions of flux produce the random walk, and together differential rotation, meridional flow (if present), and diffusion provide the dissipation. The net effect of each new source depends on its strength and orientation (relative to the strength and orientation of the mean field) and on the time elapsed before the next eruption (relative to the decay time of the field). Thus the mean field evolves principally due to the contributions of the larger sources, which produce a strong, gradually evolving field near sunspot maximum but a weak, sporadically evolving field near sunspot minimum.E. O. Hulburt Center for Space Research.Laboratory for Computational Physics.  相似文献   
157.
In the previously published Parts I and II of the paper, the author has constructed a formal long-periodic solution for the case of 11 resonance in the restricted problem of three bodies to 0(m 3/2), wherem is the small mass parameter of the system. The time-dependencet(, ,m), where is the mean synodic longitude and is related to the Jacobi constant, has been expressed by ahyperelliptic integral. It is shown here that with the approximationm=0 in the integrand, the functiont(, , 0) can be expanded in a series involving standardelliptic functions. Then the problem of inversion can be formally solved, yielding the function (t, , 0).Similarly, the normalized period (,m) of the motion can be approximated by theHagihara hyperelliptic integral (, 0), corresponding tom=0. This integral is also expanded into elliptic functions. Asymptotic forms for (, 0) are derived for 0 and for 1, corresponding to the extreme members of thetadpole branch of the family of orbits.  相似文献   
158.
A new method for predicting different kinds of multiples and peg-leg reflections in unstacked seismic data is discussed. The basis for this method is the fact that kinematic properties of multiples can be represented as a combination of kinematic properties of primary reflections. The prediction is made using a two-step process. In the first step, the values for the angle of emergence and radius of curvature of the wavefront for primary reflections from ‘multiple-generating’ interfaces are obtained. These parameters are estimated directly from unstacked data for every source point using the homeomorphic-imaging technique. The second step consists of prediction of multiples from primary reflections that satisfy a so-called ‘multiple condition’. This condition is the equality of the absolute values of the angles of emergence calculated from the first step. This method is effective even in complex media and information on the subsurface geology is not required. The parameters are estimated directly from the unstacked data and do not require any computational efforts such as in wavefield extrapolation of data.  相似文献   
159.
An Extended Resonance Problem is defined by the Hamiltonian, $$F = B(y) + 2\mu ^2 A(y)[\sin x + \lambda (y)]^2 \mu<< 1,\lambda = O(\mu ).$$ It is noted here that the phase-plane trajectories exhibit adouble libration, enclosing two centers, for the initial conditions of motion satisfying the inequality $$1 - |\lambda |< |\alpha |< 1 + |\lambda |,$$ where α is the usualresonance parameter. A first order solution for the case of double libration is constructed here by a generalization of the procedure previously used in solving the Ideal Resonance Problem with λ=0. The solution furnishes a reference orbit for a Perturbed Ideal Problem if a double libration occurs as a result of perturbations.  相似文献   
160.
In the previously published (1977a) Part I of the paper, the author has constructed a formal long-periodic solution for the case of 1:1 resonance in the restricted problem of three bodies. Here the accuracy of the solution is carried fromO(m) toO(m 3/2), wherem is the mass parameter of the system.Asymptotic approximations for the period of the motion are obtained for the case of small oscillations about the Lagrangian pointL 4, in agreement with the classical theory, and for the vicinity of a logarithmic singularity on themean separatrix, passing throughL 3. The regularizing function (), which removes the singularities of the Poincaré type, is extended to all orders, and the result is used to prove the periodicity of the solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号