首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   0篇
测绘学   5篇
大气科学   1篇
地球物理   7篇
地质学   9篇
海洋学   1篇
天文学   32篇
自然地理   3篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   8篇
  2013年   4篇
  2012年   2篇
  2011年   7篇
  2010年   2篇
  2009年   5篇
  2008年   2篇
  2007年   6篇
  2006年   1篇
  2005年   1篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1993年   1篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
21.
A mathematical treatment is presented for the forced vertical vibration of a padded annular footing on a layered viscoelastic half‐space. On assuming a depth‐independent stress distribution for the interfacial buffer, the set of triple integral equations stemming from the problem is reduced to a Fredholm integral equation of the second kind. The solution method, which is tailored to capture the stress concentrations beneath footing edges, is highlighted. To cater to small‐scale geophysical applications, the model is used to investigate the near‐field effects of ground‐loading system interaction in dynamic geotechnical and pavement testing. Numerical results indicate that the uniform‐pressure assumption for the contact load between the composite disc and the ground which is customary in dynamic plate load testing may lead to significant errors in the diagnosis of subsurface soil and pavement conditions. Beyond its direct application to non‐intrusive site characterization, the proposed solution can be used in the seismic analysis of a variety of structures involving annular foundation geometries. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
22.
The adaptive composite map projection technique changes the projection to minimize distortion for the geographic area shown on a map. This article improves the transition between the Lambert azimuthal projection and the transverse equal-area cylindrical projection that are used by adaptive composite projections for portrait-format maps. Originally, a transverse Albers conic projection was suggested for transforming between these two projections, resulting in graticules that are not symmetric relative to the central meridian. We propose the alternative transverse Wagner transformation between the two projections and provide equations and parameters for the transition. The suggested technique results in a graticule that is symmetric relative to the central meridian, and a map transformation that is visually continuous with changing map scale.  相似文献   
23.
We present a new classification of families identified among the population of high-inclination asteroids. We computed synthetic proper elements for a sample of 18,560 numbered and multi-opposition objects having sine of proper inclination greater than 0.295. We considered three zones at different heliocentric distances (inner, intermediate and outer region) and used the standard approach based on the Hierarchical Clustering Method (HCM) to identify families in each zone. In doing so, we used slightly different approach with respect to previously published methodologies, to achieve a more reliable and robust classification. We also used available SDSS color data to improve membership and identify likely family interlopers. We found a total of 38 families, as well as a significant number of clumps and clusters deserving further investigation.  相似文献   
24.
There are two problems with current cylindrical projections for world maps. First, existing cylindrical map projections have a static height-to-width aspect ratio and do not automatically adjust their aspect ratio in order to optimally use available canvas space. Second, many of the commonly used cylindrical compromise projections show areas and shapes at higher latitudes with considerable distortion. This article introduces a new compromise cylindrical map projection that adjusts the distribution of parallels to the aspect ratio of a canvas. The goal of designing this projection was to show land masses at central latitudes with a visually balanced appearance similar to how they appear on a globe. The projection was constructed using a visual design procedure where a series of graphically optimized projections was defined for a select number of aspect ratios. The visually designed projections were approximated by polynomial expressions that define a cylindrical projection for any height-to-width ratio between 0.3:1 and 1:1. The resulting equations for converting spherical to Cartesian coordinates require a small number of coefficients and are fast to execute. The presented aspect-adaptive cylindrical projection is well suited for digital maps embedded in web pages with responsive web design, as well as GIS applications where the size of the map canvas is unknown a priori. We highlight the projection with a height-to-width ratio of 0.6:1, which we call the Compact Miller projection because it is inspired by the Miller Cylindrical projection. Unlike the Miller Cylindrical projection, the Compact Miller projection has a smaller height-to-width ratio and shows the world with less areal distortion at higher latitudes. A user study with 448 participants verified that the Compact Miller – together with the Plate Carrée projection – is the most preferred cylindrical compromise projection.  相似文献   
25.
We consider an expanding three-dimensional (3-D) piston as a driver of an MHD shock wave. It is assumed that the source-region surface accelerates over a certain time interval to achieve a particular maximum velocity. Such an expansion creates a large-amplitude wave in the ambient plasma. Owing to the nonlinear evolution of the wavefront, its profile steepens and after a certain time and distance a discontinuity forms, marking the onset of the shock formation. We investigate how the formation time and distance depend on the acceleration phase duration, the maximum expansion velocity (defining also acceleration), the Alfvén velocity (defining also Mach number), and the initial size of the piston. The model differs from the 1-D case, since in the 3-D evolution, a decrease of the wave amplitude with distance must be taken into account. We present basic results, focusing on the timing of the shock formation in the low- and high-plasma-beta environment. We find that the shock-formation time and the shock-formation distance are (1) approximately proportional to the acceleration phase duration; (2) shorter for a higher expansion velocity; (3) larger in a higher Alfvén speed environment; (4) only weakly dependent on the initial source size; (5) shorter for a stronger acceleration; and (6) shorter for a larger Alfvén Mach number of the source surface expansion. To create a shock causing a high-frequency type II burst and the Moreton wave, the source region expansion should, according to our results, achieve a velocity on the order of 1000 km?s?1 within a few minutes, in a low Alfvén velocity environment.  相似文献   
26.
Sphene (CaTiSiO5), a calcium titanosilicate ceramic has been prepared from a powder mixture of CaCO3, TiO2 and SiO2 using vibro-milling for homogenization and activation of precursors. During the high-pressure and high-temperature synthesis (HPS) process at 4 GPa and 1,200 °C, sphene undergoes into phase transition, from room-temperature phase P21 /a to high-temperature phase A2/a. Evidence of that structural phase transition is given in this paper using infrared, Raman spectroscopy and X-ray powder diffraction. Rietveld refinement was employed to get the structural information of the synthesized powder. The most important structural change due to phase transition, the disappearance of the characteristic out-of-center distortion of the Ti atom and moving to the center of octahedra, was confirmed. HPS is an effective method for producing full-dense ceramics without any additives. Reduction of particle size occurred during high-pressure compaction. Microstructure and particle size of both phases were analyzed by scanning electron microscopy.  相似文献   
27.
Theoretical and Applied Climatology - In this study, statistical and soft-computing methods are compared in forecasting groundwater levels under Shared Socioeconomic Pathways (SSPs) SSP1-2.6,...  相似文献   
28.
We analyze the relationship between the coronal hole (CH) area/position and physical characteristics of the associated corotating high-speed stream (HSS) in the solar wind at 1 AU. For the analysis we utilize the data in the period DOY 25 – 125 of 2005, characterized by a very low coronal mass ejection (CME) activity. Distinct correlations between the daily averaged CH parameters and the solar wind characteristics are found, which allows us to forecast the solar wind velocity v, proton temperature T, proton density n, and magnetic field strength B, several days in advance in periods of low CME activity. The forecast is based on monitoring fractional areas A, covered by CHs in the meridional slices embracing the central meridian distance ranges [−40°,−20°], [−10°,10°], and [20°,40°]. On average, the peaks in the daily values of n, B, T, and v appear delayed by 1, 2, 3, and 4 days, respectively, after the area A attains its maximum in the central-meridian slice. The peak values of the solar wind parameters are correlated to the peak values of A, which provides also forecasting of the peak values of n, B, T, and v. The most accurate prediction can be obtained for the solar wind velocity, for which the average relative difference between the calculated and the observed peak values amounts to %. The forecast reliability is somewhat lower in the case of T, B, and n ( , 30, and 40%, respectively). The space weather implications are discussed, including the perspectives for advancing the real-time calculation of the Sun – Earth transit times of coronal mass ejections and interplanetary shocks, by including more realistic real-time estimates of the solar wind characteristics.  相似文献   
29.
We present preliminary results of recent spatially resolved mid infrared (Mid-IR) spectroscopy with the MICHELLE instrument on UKIRT of NGC 7469, observed as part of a larger programme to study a sample of starburst and AGN in the Mid-IR. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
30.
The speed [v(R)] of coronal mass ejections (CMEs) at various distances from the Sun is modeled (as proposed by Vr?nak and Gopalswamy in J. Geophys. Res. 107, 2002, doi: 10.1029/2001/JA000120 ) by using the equation of motion a drag=γ(v?w) and its quadratic form a drag=γ(v?w)|v?w|, where v and w are the speeds of the CME and solar wind, respectively. We assume that the parameter γ can be expressed as γ=αR β , where R is the heliocentric distance, and α and β are constants. We extend the analysis of Vr?nak and Gopalswamy to obtain a more detailed insight into the dependence of the CME Sun–Earth transit time on the CME speed and the ambient solar-wind speed, for different combinations of α and β. In such a parameter-space analysis, the results obtained confirm that the CME transit time depends strongly on the state of the ambient solar wind. Specifically, we found that: i) for a particular set of values of α and β, a difference in the solar-wind speed causes larger transit-time differences at low CME speeds [v 0], than at high v 0; ii) the difference between transit times of slow and fast CMEs is larger at low solar-wind speed [w 0] than at high w 0; iii) transit times of fast CMEs are only slightly influenced by the solar-wind speed. The last item is especially important for space-weather forecasting, since it reduces the number of key parameters that determine the arrival time of fast CMEs, which tend to be more geo-effective than the slow ones. Finally, we compared the drag-based model results with the observational data for two CME samples, consisting of non-interacting and interacting CMEs (Manoharan et al. in J. Geophys. Res. 109, 2004). The comparison reveals that the model results are in better agreement with the observations for non-interacting events than for the interacting events. It was also found that for slow CMEs (v 0<500 km?s?1), there is a deviation between the observations and the model if slow-wind speeds (≈?300?–?400 km?s?1) are taken for the model input. On the other hand, the model values and the observed data agree for both the slow and the fast CMEs if higher solar-wind speeds are assumed. It is also found that the quadratic form of the drag equation reproduces the observed transit times of fast CMEs better than the linear drag model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号