首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57032篇
  免费   742篇
  国内免费   1231篇
测绘学   2205篇
大气科学   4603篇
地球物理   11219篇
地质学   23627篇
海洋学   3709篇
天文学   8326篇
综合类   2271篇
自然地理   3045篇
  2022年   199篇
  2021年   350篇
  2020年   359篇
  2019年   340篇
  2018年   5414篇
  2017年   4722篇
  2016年   3533篇
  2015年   837篇
  2014年   1112篇
  2013年   1845篇
  2012年   2062篇
  2011年   3939篇
  2010年   3164篇
  2009年   3732篇
  2008年   3117篇
  2007年   3531篇
  2006年   1309篇
  2005年   1128篇
  2004年   1304篇
  2003年   1218篇
  2002年   1070篇
  2001年   831篇
  2000年   815篇
  1999年   625篇
  1998年   623篇
  1997年   648篇
  1996年   542篇
  1995年   531篇
  1994年   528篇
  1993年   417篇
  1992年   415篇
  1991年   389篇
  1990年   407篇
  1989年   376篇
  1988年   371篇
  1987年   401篇
  1986年   355篇
  1985年   457篇
  1984年   454篇
  1983年   489篇
  1982年   455篇
  1981年   418篇
  1980年   457篇
  1979年   364篇
  1978年   346篇
  1977年   326篇
  1976年   298篇
  1975年   305篇
  1974年   304篇
  1973年   291篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Summary ?In the south-eastern Altenbergkar–Silbereck area in the eastern Tauern window (Lungau, Salzburg) structurally controlled precious-metal (Au–Ag) mineralization is hosted in marbles of the Permo(?)-Mesozoic Silbereck Formation and in the underlying Variscan Central gneiss. During the Alpine otogeny both lithologies were affected by ductile deformation (shearing, D1; folding, D2/D3) and subsequent brittle deformation (tension gashes, D4; normal faulting, D5) related to the uplift and exhumation of the Tauern window. Mineralization is controlled by brittle D4 structures. NE–SW trending steeply dipping tension gashes of the “Tauerngoldgang” type occur within the Central gneiss. Three different marble-hosted ore types following fracture systems as well as foliation and bedding planes can be distinguished: 1) metasomatic replacement ores, 2) ores in tension gashes and 3) ores in talc-bearing structures, often containing high-grade gold and silver mineralization (native gold in association with Ag–Pb–Bi–sulfosalts). Four stages of mineralization can be distinguished which occur in all ore types: arsenopyrite–pyrite–pyrrhotite (first stage), Au–(Ag–Pb–Bi–sulfosalts) (second stage), base-metal sulfides and tetrahedrite–tennantite (third stage) and Ag-rich galena (fourth stage). Preliminary fluid inclusion data indicate temperatures of ore formation well above 300 °C (346 °C mean) for the second stage within the Central gneiss and temperatures between 310 and 230 °C for the second and third stages in the marble. Received October 12, 2001; revised version accepted September 5, 2002 Published online March 10, 2003  相似文献   
12.
13.
Previous research on the cetacean auditory system has consisted mostly of behavioral studies on a limited number of species. Little quantitative physiologic data exists on cetacean hearing. The frequency range of hearing varies greatly across different mammalian species. Differences among species correlate with differences in the middle-ear transfer function. Middle-ear transfer functions depend on the mechanical stiffness of the middle ear and the cochlear input impedance. The purpose of this study was to measure the middle-ear stiffness for the bottlenose dolphin (Tursiops truncatus), a species specialized for underwater high-frequency hearing and echolocation. Middle-ear stiffness was measured with a force probe that applied a known displacement to the stapes and measured the restoring force. The average middle-ear stiffness in ten dolphin ears was 1.37 N//spl mu/m, which is considerably higher than that reported for most terrestrial mammals. The relationship between middle-ear stiffness and low-frequency hearing cutoff in Tursiops was shown to be comparable to that of terrestrial mammals.  相似文献   
14.
15.
The number of black-headed gulls (Larus ridibundus) in the Clyde Estuary is large. In summer the average density has reached 1350 gulls km?2 and in winter 180 gulls km?2. This paper compares prey selection and feeding efficiency in gulls during summer and winter on tidal flats, and considers how seasonal differences may be adaptations to cope with seasonal changes in prey availability.Gross and net rates of energy intake were highest in summer because gulls captured more of the polychaete N. diversicolor than the amphipod C. volutator. In winter, gulls selected for C. volutator and therefore an energetically less profitable diet. Throughout the year gulls selected more C. volutator relative to N. diversicolor than expected on energetic grounds and so apparently did not maximize potential net rate of energy intake.Gulls used three techniques to capture prey and made most intensive use of the ‘crouch’ technique. Crouching gulls attained a much higher net rate of energy intake than ‘upright’ or ‘paddling’ gulls.A log-linear model showed that (a) season, water depth and gull density determined feeding technique and (b) feeding technique and season independently determined foraging success and prey selection. Thus gull density and water depth acted on prey selection through imposed variations in feeding technique.Reasons for gulls selecting energetically unprofitable C. volutator and for the use of several distinct feeding techniques are discussed.  相似文献   
16.
Ralph B. Baldwin 《Icarus》1985,61(1):63-91
This paper contains a reasonably successful attempt to determine relative ages and then absolute ages of individual craters younger than Imbrium, and the rate of infalls onto the Moon as a function of time. After the tail of the massive premare bombardment became depleted before 3 aeons (1 aeon = 109 years) ago, there was a period of minimal numbers of infalls. The rate of infalls increased rather steadily from this minimum to the present. The rate in the geologically recent past (0.3 aeon) was about two times that found for the period immediately after the last of the major lave outpourings (3.2 aeons). Absolute ages were determined for large craters (?8 km) from crater counts on the surfaces within and on the rims of the large craters. Key dates were 0 and 0.3 aeon for terrestrial meteoritic craters, 3.2, 3.5, 3.8, and 3.82 aeons for the various mare surfaces according to the determinations of D.E. Wilhelms (1980, Geologic history of the Moon, U.S. Geol. Surv. Prof. Pap.) and 3.85 aeons from the formation of Imbrium.  相似文献   
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号