首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4365篇
  免费   150篇
  国内免费   10篇
测绘学   171篇
大气科学   589篇
地球物理   1022篇
地质学   1768篇
海洋学   204篇
天文学   574篇
综合类   15篇
自然地理   182篇
  2021年   64篇
  2020年   60篇
  2019年   47篇
  2018年   123篇
  2017年   140篇
  2016年   213篇
  2015年   132篇
  2014年   189篇
  2013年   247篇
  2012年   102篇
  2011年   162篇
  2010年   181篇
  2009年   216篇
  2008年   148篇
  2007年   133篇
  2006年   112篇
  2005年   95篇
  2004年   68篇
  2003年   73篇
  2002年   102篇
  2001年   88篇
  2000年   74篇
  1999年   74篇
  1998年   75篇
  1997年   65篇
  1996年   57篇
  1995年   65篇
  1994年   79篇
  1993年   35篇
  1992年   38篇
  1991年   38篇
  1990年   45篇
  1989年   38篇
  1988年   31篇
  1987年   35篇
  1985年   47篇
  1984年   48篇
  1983年   57篇
  1982年   46篇
  1981年   47篇
  1980年   41篇
  1979年   34篇
  1978年   63篇
  1977年   35篇
  1976年   36篇
  1975年   44篇
  1974年   53篇
  1973年   51篇
  1968年   27篇
  1962年   26篇
排序方式: 共有4525条查询结果,搜索用时 93 毫秒
701.
This study developed methodology for statistically assessing groundwater contamination mechanisms. It focused on microbial water pollution in low-income regions. Risk factors for faecal contamination of groundwater-fed drinking-water sources were evaluated in a case study in Juba, South Sudan. The study was based on counts of thermotolerant coliforms in water samples from 129 sources, collected by the humanitarian aid organisation Médecins Sans Frontières in 2010. The factors included hydrogeological settings, land use and socio-economic characteristics. The results showed that the residuals of a conventional probit regression model had a significant positive spatial autocorrelation (Moran’s I?=?3.05, I-stat?=?9.28); therefore, a spatial model was developed that had better goodness-of-fit to the observations. The most significant factor in this model (p-value 0.005) was the distance from a water source to the nearest Tukul area, an area with informal settlements that lack sanitation services. It is thus recommended that future remediation and monitoring efforts in the city be concentrated in such low-income regions. The spatial model differed from the conventional approach: in contrast with the latter case, lowland topography was not significant at the 5% level, as the p-value was 0.074 in the spatial model and 0.040 in the traditional model. This study showed that statistical risk-factor assessments of groundwater contamination need to consider spatial interactions when the water sources are located close to each other. Future studies might further investigate the cut-off distance that reflects spatial autocorrelation. Particularly, these results advise research on urban groundwater quality.  相似文献   
702.
Both increasing aridity and population growth strongly stress freshwater resources in semi-arid areas such as Jordan. The country’s second largest governorate, Irbid, with over 1 million inhabitants, is already suffering from an annual water deficit of 25 million cubic meters (MCM). The population is expected to double within the next 20 years. Even without the large number of refugees from Syria, the deficit will likely increase to more then 50 MCM per year by 2035 The Governorate’s exclusive resource is groundwater, abstracted by the extensive Al Arab and Kufr Asad well fields. This study presents the first three-dimensional transient regional groundwater flow model of the entire Wadi al Arab to answer important questions regarding the dynamic quality and availability of water within the catchment. Emphasis is given to the calculation and validation of the dynamic groundwater recharge, derived from a multi-proxy approach, including (1) a hydrological model covering a 30-years dataset, (2) groundwater level measurements and (3) information about springs. The model enables evaluation of the impact of abstraction on the flow regime and the groundwater budget of the resource. Sensitivity analyses of controlling parameters indicate that intense abstraction in the southern part of the Wadi al Arab system can result in critical water-level drops of 10 m at a distance of 16 km from the production wells. Moreover, modelling results suggest that observed head fluctuations are strongly controlled by anthropogenic abstraction rather than variable recharge rates due to climate changes.  相似文献   
703.
The characteristics of groundwater systems and groundwater contamination in Finland, Norway and Iceland are presented, as they relate to outbreaks of disease. Disparities among the Nordic countries in the approach to providing safe drinking water from groundwater are discussed, and recommendations are given for the future. Groundwater recharge is typically high in autumn or winter months or after snowmelt in the coldest regions. Most inland aquifers are unconfined and therefore vulnerable to pollution, but they are often without much anthropogenic influence and the water quality is good. In coastal zones, previously emplaced marine sediments may confine and protect aquifers to some extent. However, the water quality in these aquifers is highly variable, as the coastal regions are also most influenced by agriculture, sea-water intrusion and urban settlements resulting in challenging conditions for water abstraction and supply. Groundwater is typically extracted from Quaternary deposits for small and medium municipalities, from bedrock for single households, and from surface water for the largest cities, except for Iceland, which relies almost entirely on groundwater for public supply. Managed aquifer recharge, with or without prior water treatment, is widely used in Finland to extend present groundwater resources. Especially at small utilities, groundwater is often supplied without treatment. Despite generally good water quality, microbial contamination has occurred, principally by norovirus and Campylobacter, with larger outbreaks resulting from sewage contamination, cross-connections into drinking water supplies, heavy rainfall events, and ingress of polluted surface water to groundwater.  相似文献   
704.
International Journal of Earth Sciences - This study concentrates in the Kiannanniemi area, situated in the Archaean Suomussalmi greenstone belt, the Karelia Province, Fennoscandian Shield. A...  相似文献   
705.
International Journal of Earth Sciences - Across the crystalline basement of Madagascar, late Archaean rocks of the Antananarivo Block are tectonically overlain by Proterozoic, predominantly...  相似文献   
706.
Tekkehamam geothermal field is located in the South of Menderes Graben (Aegean region) and is one of the most important geothermal sites of Western Anatolia. Umut geothermal field is a part of the Tekkehamam field. This study was conducted in order to determine the origin and hydrogeochemical properties of the geothermal waters. For this purpose, sampling was done in order to check the chemistry of the water, and 18O, 2H isotope analyses done at four wells, nine natural springs and three cold water sources. According to the results of the chemical analysis, the geothermal waters were determined to be of Na + K-SO4 type. Additionally, 14C and 3H analyses were done in selected well and spring waters for the purpose of age determination of groundwater; most of the waters were determined to be submodern. Geothermometer calculations show that the reservoir temperature for the Umut geothermal field ranges between 148 and 180 °C. Stable isotope results indicate that Umut geothermal waters are meteoric in origin. Mixing between shallow and deep waters is the dominant subsurface process that determines the physical and chemical character of the waters.  相似文献   
707.
The conventional liquefaction potential assessment methods (also known as simplified methods) profoundly rely on empirical correlations based on observations from case histories. A probabilistic framework is developed to incorporate uncertainties in the earthquake ground motion prediction, the cyclic resistance prediction, and the cyclic demand prediction. The results of a probabilistic seismic hazard assessment, site response analyses, and liquefaction potential analyses are convolved to derive a relationship for the annual probability and return period of liquefaction. The random field spatial model is employed to quantify the spatial uncertainty associated with the in-situ measurements of geotechnical material.  相似文献   
708.
A ground penetrating radar (GPR) survey was performed on the E?irdir Lake to obtain the structural properties of Kumdanl? and surrounding faults. GPR data was collected along ten profiles in various directions by using 100–200-MHz GPR antennas. The radar sections showed that the Kumdanl? Fault, SW-NE in direction, and also some other neighboring NW-SE normal faults have played an active role in forming the E?irdir-Hoyran Lakes. The deformation and the geometry obtained from the results show that the Kumdanl? Fault is a sinistral strike-slip fault including oblique and segmented displacements. The other faults (Kemerdam? and Akkeçili) have mainly normal fault systems. Their trends are generally NW-SE in direction. It is also observed that they are younger than the Kumdanl? Fault system. These fault properties demonstrate the E?irdir Lake side has an extensional structure trending SW-NE.  相似文献   
709.
710.
We present a numerical study for 3D time‐lapse electromagnetic monitoring of a fictitious CO2 sequestration using the geometry of a real geological site and a suite of suitable electromagnetic methods with different source/receiver configurations and different sensitivity patterns. All available geological information is processed and directly implemented into the computational domain, which is discretized by unstructured tetrahedral grids. We thus demonstrate the performance capability of our numerical simulation techniques. The scenario considers a CO2 injection in approximately 1100 m depth. The expected changes in conductivity were inferred from preceding laboratory measurements. A resistive anomaly is caused within the conductive brines of the undisturbed reservoir horizon. The resistive nature of the anomaly is enhanced by the CO2 dissolution regime, which prevails in the high‐salinity environment. Due to the physicochemical properties of CO2, the affected portion of the subsurface is laterally widespread but very thin. We combine controlled‐source electromagnetics, borehole transient electromagnetics, and the direct‐current resistivity method to perform a virtual experiment with the aim of scrutinizing a set of source/receiver configurations with respect to coverage, resolution, and detectability of the anomalous CO2 plume prior to the field survey. Our simulation studies are carried out using the 3D codes developed in our working group. They are all based on linear and higher order Lagrange and Nédélec finite‐element formulations on unstructured grids, providing the necessary flexibility with respect to the complex real‐world geometry. We provide different strategies for addressing the accuracy of numerical simulations in the case of arbitrary structures. The presented computations demonstrate the expected great advantage of positioning transmitters or receivers close to the target. For direct‐current geoelectrics, 50% change in electric potential may be detected even at the Earth's surface. Monitoring with inductive methods is also promising. For a well‐positioned surface transmitter, more than 10% difference in the vertical electric field is predicted for a receiver located 200 m above the target. Our borehole transient electromagnetics results demonstrate that traditional transient electromagnetics with a vertical magnetic dipole source is not well suited for monitoring a thin horizontal resistive target. This is due to the mainly horizontal current system, which is induced by a vertical magnetic dipole.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号