首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4365篇
  免费   150篇
  国内免费   10篇
测绘学   171篇
大气科学   589篇
地球物理   1022篇
地质学   1768篇
海洋学   204篇
天文学   574篇
综合类   15篇
自然地理   182篇
  2021年   64篇
  2020年   60篇
  2019年   47篇
  2018年   123篇
  2017年   140篇
  2016年   213篇
  2015年   132篇
  2014年   189篇
  2013年   247篇
  2012年   102篇
  2011年   162篇
  2010年   181篇
  2009年   216篇
  2008年   148篇
  2007年   133篇
  2006年   112篇
  2005年   95篇
  2004年   68篇
  2003年   73篇
  2002年   102篇
  2001年   88篇
  2000年   74篇
  1999年   74篇
  1998年   75篇
  1997年   65篇
  1996年   57篇
  1995年   65篇
  1994年   79篇
  1993年   35篇
  1992年   38篇
  1991年   38篇
  1990年   45篇
  1989年   38篇
  1988年   31篇
  1987年   35篇
  1985年   47篇
  1984年   48篇
  1983年   57篇
  1982年   46篇
  1981年   47篇
  1980年   41篇
  1979年   34篇
  1978年   63篇
  1977年   35篇
  1976年   36篇
  1975年   44篇
  1974年   53篇
  1973年   51篇
  1968年   27篇
  1962年   26篇
排序方式: 共有4525条查询结果,搜索用时 15 毫秒
601.
We investigate the effect of source distribution on the bulk transfer of passive scalars between rough, vegetated land surfaces and the atmosphere, using data from a wind-tunnel experiment in which passive heat was emitted from both the underlying surface and canopy elements of a three-dimensional regular bluff-body array. The experimental results are compared with a simple one-dimensional, two-source model for scalar transfer. We find that: (1) the observed scalar transfer resistance across the boundary layer at the underlying surface is simply related to flat-plate theory by a constant of 0.62, despite the complexity of the turbulent flow within the wind-tunnel canopy; (2) one-dimensional gradient-transfer theory, even with extensions to account for the non-local nature of turbulent transfer within the canopy, does not describe the observed details of scalar concentration gradients in the highly three-dimensional canopy flow, but does provide a reasonable framework for bulk scalar transfer between the composite ground-canopy surface and the flow above the canopy; (3) the kB −1 parameter (which accounts for bulk excess resistance to scalar transfer over momentum transfer) is highly sensitive to scalar source partition between ground and canopy.  相似文献   
602.
This two-year study investigates the relative influence of meteorological variables (precipitation amount and temperature), atmospheric circulation, air mass history, and moisture source region on Irish precipitation oxygen isotopes (δ18Op) on event and monthly timescales. Single predictor correlations reveal that on the event scale, 20% of δ18Op variability is attributable to the amount effect and 7% to the temperature effect while on the monthly timescale the North Atlantic Oscillation accounts for up to 20% of δ18Op variability and the amount and temperature effects are not significant. In comparison, multivariate linear regression reveals that the interaction of temperature and precipitation amount explains up to 40% of δ18Op variance at event and monthly timescales. Five-day kinematic back trajectories suggest that the amount-weighted mean δ18Op value of southerly- and northerly-derived events are lower by 2‰ relative to events derived from the west. Because air mass history and atmospheric circulation appear to influence δ18Op in Ireland, Irish paleo-δ18Op proxy records are best interpreted as reflecting a combination of parameters, not just paleotemperature or paleorainfall.  相似文献   
603.
604.
We outline our experience in organizing the first edition of the Workshop on Matter, Astrophysics, Gravitation, Ions and Cosmology, held in virtual and in-person format, denominated MAGIC23, held from 6 to 10 March, 2023, in Praia do Rosa, Santa Catarina, Brazil. The event aimed to bring together leading academic scientists, professors, students, and research scholars for exchanging experiences and discuss the most recent innovations, trends, practical challenges, and experimental and theoretical solutions adopted in the investigation fields within the scope of the meeting. The workshop offered to the participants a platform for scientific and academic projects, partnerships, and presentation of high-quality research contributions describing original and unpublished results on topics related to matter, astrophysics, gravitation, ions, and cosmology.  相似文献   
605.
We present results from modelling of quasi-simultaneous broad-band (radio through X-ray) observations of the Galactic stellar black hole (BH) transient X-ray binary (XRB) systems XTE J1118+480 and GX 339−4 using an irradiated disc + compact jet model. In addition to quantifying the physical properties of the jet, we have developed a new irradiated disc model which also constrains the geometry and temperature of the outer accretion disc by assuming a disc heated by viscous energy release and X-ray irradiation from the inner regions. For the source XTE J1118+480, which has better spectral coverage of the two in optical and near-infrared (OIR) wavelengths, we show that the entire broad-band continuum can be well described by an outflow-dominated model + an irradiated disc. The best-fitting radius of the outer edge of the disc is consistent with the Roche lobe geometry of the system, and the temperature of the outer edge of the accretion disc is similar to those found for other XRBs. Irradiation of the disc by the jet is found to be negligible for this source. For GX 339−4, the entire continuum is well described by the jet-dominated model only, with no disc component required. For the two XRBs, which have very different physical and orbital parameters and were in different accretion states during the observations, the sizes of the jet base are similar and both seem to prefer a high fraction of non-thermal electrons in the acceleration/shock region and a magnetically dominated plasma in the jet. These results, along with recent similar results from modelling other galactic XRBs and AGNs, may suggest an inherent unity in diversity in the geometric and radiative properties of compact jets from accreting black holes.  相似文献   
606.
We analyze a series of complex interplanetary events and their solar origins that occurred between 19 and 23 May 2007 using observations by the STEREO and Wind satellites. The analyses demonstrate the new opportunities offered by the STEREO multispacecraft configuration for diagnosing the structure of in situ events and relating them to their solar sources. The investigated period was characterized by two high-speed solar wind streams and magnetic clouds observed in the vicinity of the sector boundary. The observing satellites were separated by a longitudinal distance comparable to the typical radial extent of magnetic clouds at 1 AU (fraction of an AU), and, indeed, clear differences were evident in the records from these spacecraft. Two partial-halo coronal mass ejections (CMEs) were launched from the same active region less than a day apart, the first on 19 May and the second on 20 May 2007. The clear signatures of the magnetic cloud associated with the first CME were observed by STEREO B and Wind while only STEREO A recorded clear signatures of the magnetic cloud associated with the latter CME. Both magnetic clouds appeared to have interacted strongly with the ambient solar wind and the data showed evidence that they were a part of the coronal streamer belt. Wind and STEREO B also recorded a shocklike disturbance propagating inside a magnetic cloud that compressed the field and plasma at the cloud’s trailing portion. The results illustrate how distant multisatellite observations can reveal the complex structure of the extension of the coronal streamer into interplanetary space even during the solar activity minimum. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   
607.
Over one thousand objects have so far been discovered orbiting beyond Neptune. These trans-Neptunian objects (TNOs) represent the primitive remnants of the planetesimal disk from which the planets formed and are perhaps analogous to the unseen dust parent-bodies in debris disks observed around other main-sequence stars. The dynamical and physical properties of these bodies provide unique and important constraints on formation and evolution models of the Solar System. While the dynamical architecture in this region (also known as the Kuiper Belt) is becoming relatively clear, the physical properties of the objects are still largely unexplored. In particular, fundamental parameters such as size, albedo, density and thermal properties are difficult to measure. Measurements of thermal emission, which peaks at far-IR wavelengths, offer the best means available to determine the physical properties. While Spitzer has provided some results, notably revealing a large albedo diversity in this population, the increased sensitivity of Herschel and its superior wavelength coverage should permit profound advances in the field. Within our accepted project we propose to perform radiometric measurements of 139 objects, including 25 known multiple systems. When combined with measurements of the dust population beyond Neptune (e.g. from the New Horizons mission to Pluto), our results will provide a benchmark for understanding the Solar debris disk, and extra-solar ones as well.  相似文献   
608.
At the end of August 2007, Venus, Earth and Ulysses were aligned within a few degrees. This unusual event gives the opportunity to attempt a coordinated study on the radial evolution of solar wind turbulence and coronal transients like CMEs between 0.7 and 1.4 AU. Interplanetary magnetic field data and moments of proton velocity distribution function such as density, speed and temperature are required for this programme and will be provided by ACE at Earth, Venus Express at Venus and Ulysses at 1.4 AU. This project has been recently proposed as a Coordinated Investigation Programme (CIP35) for the International Heliophysical Year.  相似文献   
609.
610.
The ultramafic-hosted Logatchev Hydrothermal Field (LHF) at 15°N on the Mid-Atlantic Ridge and the Arctic Gakkel Ridge (GR) feature carbonate precipitates (aragonite, calcite, and dolomite) in voids and fractures within different types of host rocks. We present chemical and Sr isotopic compositions of these different carbonates to examine the conditions that led to their formation. Our data reveal that different processes have led to the precipitation of carbonates in the various settings. Seawater-like 87Sr/86Sr ratios for aragonite in serpentinites (0.70909 to 0.70917) from the LHF are similar to those of aragonite from the GR (0.70912 to 0.70917) and indicate aragonite precipitation from seawater at ambient conditions at both sites. Aragonite veins in sulfide breccias from LHF also have seawater-like Sr isotope compositions (0.70909 to 0.70915), however, their rare earth element (REE) patterns show a clear positive europium (Eu) anomaly indicative of a small (< 1%) hydrothermal contribution. In contrast to aragonite, dolomite from the LHF has precipitated at much higher temperatures (~ 100 °C), and yet its 87Sr/86Sr ratios (0.70896 to 0.70907) are only slightly lower than those of aragonite. Even higher temperatures are calculated for the precipitation of deformed calcite veins in serpentine–talc fault schists form north of the LHF. These calcites show unradiogenic 87Sr/86Sr ratios (0.70460 to 0.70499) indicative of precipitation from evolved hydrothermal fluids. A simple mixing model based on Sr mass balance and enthalpy conservation indicates strongly variable conditions of fluid mixing and heat transfers involved in carbonate formation. Dolomite precipitated from a mixture of 97% seawater and 3% hydrothermal fluid that should have had a temperature of approximately 14 °C assuming that no heat was transferred. The much higher apparent precipitation temperatures based on oxygen isotopes (~ 100 °C) may be indicative of conductive heating, probably of seawater prior to mixing. The hydrothermal calcite in the fault schist has precipitated from a mixture of 67% hydrothermal fluid and 33% seawater, which should have had an isenthalpic mixing temperature of ~ 250 °C. The significantly lower temperatures calculated from oxygen isotopes are likely due to conductive cooling of hydrothermal fluid discharging along faults. Rare earth element patterns corroborate the results of the mixing model, since the hydrothermal calcite, which formed from waters with the greatest hydrothermal contribution, has REE patterns that closely resemble those of vent fluids from the LHF. Our results demonstrate, for the first time, that (1) precipitation from pure seawater, (2) conductive heating of seawater, and (3) conductive cooling of hydrothermal fluids in the sub-seafloor all can lead to carbonate precipitation within a single ultramafic-hosted hydrothermal system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号