首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38627篇
  免费   3082篇
  国内免费   5099篇
测绘学   2590篇
大气科学   4749篇
地球物理   7967篇
地质学   19933篇
海洋学   3026篇
天文学   2220篇
综合类   3410篇
自然地理   2913篇
  2024年   114篇
  2023年   336篇
  2022年   743篇
  2021年   900篇
  2020年   775篇
  2019年   950篇
  2018年   5510篇
  2017年   4726篇
  2016年   3406篇
  2015年   1115篇
  2014年   1131篇
  2013年   1004篇
  2012年   1967篇
  2011年   3717篇
  2010年   2966篇
  2009年   3195篇
  2008年   2743篇
  2007年   3149篇
  2006年   772篇
  2005年   781篇
  2004年   900篇
  2003年   843篇
  2002年   658篇
  2001年   432篇
  2000年   467篇
  1999年   502篇
  1998年   413篇
  1997年   410篇
  1996年   327篇
  1995年   290篇
  1994年   313篇
  1993年   244篇
  1992年   187篇
  1991年   147篇
  1990年   113篇
  1989年   86篇
  1988年   104篇
  1987年   58篇
  1986年   47篇
  1985年   43篇
  1984年   39篇
  1983年   34篇
  1982年   35篇
  1981年   48篇
  1980年   26篇
  1979年   12篇
  1978年   5篇
  1976年   6篇
  1958年   7篇
  1954年   8篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
981.
Hydrogeochemical and isotopic signatures of the waters of the Baro-Akobo River Basin show deviation from signatures in other Ethiopian river basins. In this study, hydrogeochemical and isotope methods were employed to determine regional and local hydrogeology and characteristics of the basin. Optical, thermal and radar remote sensing products were used to update geological and structural maps of the basin and determine sampling points using the judgment sampling method. A total of 363 samples from wells, springs, rivers, lakes, swamps and rain were collected for this study, and an additional 270 water quality data sets were added from previous studies. These data were analyzed for their hydrogeochemical characteristics and isotope signatures. Analysis of the oxygen, deuterium and tritium isotopes shows the groundwater of the basin is modern water. Among all basins in Ethiopia, the Baro-Akobo Basin shows the highest enrichment. This indicates the proximity of the rainfall sources, which presumably are the Sudd and other wetlands in South Sudan. The hydrochemical properties of the waters show evapotranspiration is the dominant hydrologic process in the basin and explains the large amount of water that is lost in the lowland plain. Analysis of radon-222 shows no significant groundwater flux over the wetlands, which are part of Machar Marshes. This shows evaporation to be dominant hydrologic process in this zone. Results from all analyses help explain the limited holding capacity of the aquifers in the recharge zone and their vulnerability to anthropogenic impacts and climate variability. There is a trend of decreasing surface flow and rainfall and increasing water soil erosion.  相似文献   
982.
During the last decades, growth of urbanization and industrialization led to an increase in solid waste generation. Landfilling is the most prevalent ultimate disposal method for the municipal solid wastes in developing countries. The rapid municipal solid waste generation in Markazi province (central part of Iran) causes the need for precision in finding a suitable landfill site selection. In the present study, 12 factors (environmental and socioeconomic factors) have been applied to select the landfill site in Markazi province, Iran. The different methods including the analytic network process (ANP) combined with fuzzy linguistic quantifier, ordered weighted average (OWA), and weighted linear combination (WLC) approach in geographic information system was applied to find an appropriate landfill site. The OWA operator function permits the evaluation of the wide spectrum of consequences (with different scenario) obtained from different management strategies. Results revealed that integration of fuzzy logic, ANP, and OWA provides flexible and better ideas compared to the Boolean logic and WLC to select a suitable landfill site.  相似文献   
983.
Debris flow is one of the most serious and frequent geological disasters that occur in the Loess Plateau. The outbreak of a debris flow is sudden, ferocious, swift, and destructive. The characteristics and mechanism of debris flow were explored in this study via survey, numerical simulation, and simulation analysis in a Loess Plateau area (Huangling County, Shaanxi Province, China). Numerical models and formulas corresponding to the occurrence and movement mechanism were established based on the HEC-RAS, HEC-GeoRAS, and SWAT results. The range of debris flow deposition was determined through capturing the debris flow free surface. A hydrological model and critical rainfall threshold were determined in order to provide technical support for debris flow forecasting in the Loess Plateau. The results suggest that 10-year floods do not submerge any portion of the basin. One village area was affected by the 100-year flood (total area of 0.648 km2) while four villages areas were submerged by the 1000-year flood (total area of 1.39 km2). The method presented here may provide a reliable scientific basis for mitigating loss due to debris flow hazards.  相似文献   
984.
Due to deficient water resources in the Loess Plateau, watershed management plays a very important role, not only for ecological and environmental protection but also for the social development of the region. To better understand the hydrological and water resource variations in the typical watershed of the Loess Plateau and the Qinghe River Basin, the influences of land cover and climate change were analysed, and a SWAT model was built to simulate the response of the hydrological situation to land cover changes that have occurred over the past 30 years. The results demonstrated that the main land cover change occurring in the Qinghe River Basin was the conversion of land cover from grassland to woodland and farmland from the late 1980s to 2010. Woodland and farmland took 87.36 and 10.55%, respectively, from the overall area transferred over 20 years and more than 18% of the total watershed area. Hydrological simulation results indicated that land cover played a predominant role in the hydrological variation of the Qinghe River Basin, although the effects of climate change should not be discounted. The significant changes in land cover could be superimposed by policy orientation and economic requirements. Although it is hard to evaluate the land cover changes and the corresponding hydrological responses in a simple language, related analyses have demonstrated an increasing trend of runoff in the dry season, while there is a somewhat decreasing trend during the flood season in the river basin. There results could be significant and provide a positive influence on both future flood control and the conservation of water and soil.  相似文献   
985.
This paper presents a major extension of seismic vulnerability research project on the site of Trako??an Castle based on the initial horizontal-to-vertical-spectral-ratio (HVSR) results from Stanko et al. (2016). The estimated HVSR site frequencies and HV amplification at Trako??an Castle can only be used as an indication of the initial soil site frequency and amplification, so-called natural soil model, corresponding to the subsoil profile without the influence of an earthquake. The equivalent-linear (EQL) site response analysis has been carried out for different earthquake scenarios for a maximum input rock peak ground acceleration (PGAROCK) that corresponds to return periods of 95 (0.08 g), 475 (0.18 g) and 1000 years (0.31 g). The aim of the research is to evaluate structural seismic design responses and to determine type and degree of damage caused by local site effect, which is the result of an alluvial basin and topographic influences. The main objective of this research is the formation of local microseismic zones based on an EQL analysis: surface spectral acceleration and amplification maps at the predominant frequency. Based on the HVSR frequency response of the core structure of Trako??an Castle and the Tower itself (fundamental and higher frequency modes), maps of surface spectral acceleration and soil amplification at different frequencies (3, 5 and 10 Hz) are developed for different input PGAROCK levels (0.08, 0.18 and 0.31 g) to evaluate seismic response of the Castle. Observed amplifications are correlated with ground motion polarization and directionality of the ground motion from the alluvial basin to the hilltop. Shortening of predominant frequencies (lengthening of the period), particularly in the alluvial basin, has been observed with higher input PGAROCK in the EQL analysis. This effect is not manifested in the Trako??an hill, and predominant frequencies match HVSR frequencies. The use of certain geophysical survey methods at historical sites is a big problem, because terrain features (e.g. steep hills, mountains, ridges, slopes, cliffs) create lack of space and make it impossible to carry out geophysical investigation. Microtremor measurements at historical sites can overcome this limitation and provide local seismic response and vulnerability behaviour of historical monuments without destroying their authenticity. Also, computational modelling can greatly improve the results. The EQL site response analysis on the site of Trako??an Castle has confirmed and improved the results of seismic response and vulnerability based on HVSR method.  相似文献   
986.
The sustainability of water resources mainly depends on planning and management of land use; a small change in it may affect water yield largely, as both are linked through relevant hydrological processes, explicitly. However, human activities, especially a significant increase in population, in-migration and accelerated socio-economic activities, are constantly modifying the land use and land cover (LULC) pattern. The impact of such changes in LULC on the hydrological regime of a basin is of widespread concern and a great challenge to the water resource engineers. While studying these impacts, the issue that prevails is the selection of a hydrological model that may be able to accommodate spatial and temporal dynamics of the basin with higher accuracy. Therefore, in the present study, the capabilities of variable infiltration capacity hydrological model to hydrologically simulate the basin under varying LULC scenarios have been investigated. For the present analysis, the Pennar River Basin, Andhra Pradesh, which falls under a water scarce region in India, has been chosen. The water balance components such as runoff potential, evapotranspiration (ET) and baseflow of Pennar Basin have been simulated under different LULC scenarios to study the impact of change on hydrological regime of a basin. Majorly, increase in built-up (13.94% approx.) and decrease in deciduous forest cover (2.44%) are the significant changes observed in the basin during the last three decades. It was found that the impact of LULC change on hydrology is balancing out at basin scale (considering the entire basin, while routing the runoff at the basin outlet). Therefore, an analysis on spatial variation in each of the water balance components considered in the study was done at grid scale. It was observed that the impact of LULC is considerable spatially at grid level, and the maximum increase of 265 mm (1985–2005) and the decrease of 48 mm (1985–1995) in runoff generation at grid were estimated. On the contrary, ET component showed the maximum increase of 400 and decrease of 570 mm under different LULC change scenario. Similarly, in the base flow parameter, an increase of 70 mm and the decrease of 100 mm were observed. It was noticed that the upper basin is showing an increasing trend in almost all hydrological components as compared to the lower basin. Based on this basin scale study, it was concluded that change in the land cover alters the hydrology; however, it needs to be studied at finer spatial scale rather than the entire basin as a whole. The information like the spatial variation in hydrological components may be very useful for local authority and decision-makers to plan mitigation strategies accordingly.  相似文献   
987.
This paper presents an assessment on the use of dynamic compaction as a ground improvement technique in a port’s hydraulic fill in the new southern dock of Sagunto’s Harbor near Valencia (Spain). Soil behavior improvement was monitored by several in situ techniques such as boreholes with SPTs, DPSH, CPTU and CSWS geophysical tests. A total energy between 2188 and 3125 kN/m2 (depending the area) was applied to the hydraulic fill by the dynamic compaction procedure. In situ techniques led to evaluate dynamic compaction efficiency, as well as controlling ground modifications that might cause potential damages to adjacent buildings. The dynamic compaction carried out was capable of fulfilling requirements established to use the area, that is, an average deformability modulus (E′) of 30 MPa with a minimum of 20 MPa, in a depth of 10 m. Moreover, dynamic compaction increased hydraulic fill relative density by about 75%.  相似文献   
988.
A simple one-dimensional analytical solution is presented to model oxygen diffusion through the pore space of mine spoils containing pyrite. The model incorporates volumetric oxygen consumption terms due to pyrite oxidation, oxidation of Fe 2+ to Fe 3+ and bacterial activity. Based on this analytical solution, a graphical user interface (GUI) tool is programmed and designed in MATLAB software. This tool can be used to model transport of oxygen through the mine spoils either with or without a cap. Results of several simulation scenarios of sensitivity analysis showed a significant change in oxygen concentration with varying effective diffusion coefficient of oxygen transport model and simulation time. Efficiency and flexibility of the tool developed here is verified by modelling oxygen transport through the pore space of a coal waste pile (case A) and a copper mine tailings (case B). Maximum depth of oxygen diffusion is obtained approximately equal to 2 and 1.5 m through the cases A and B, respectively.  相似文献   
989.
Very low frequency electromagnetic (VLF-EM) measurements were carried out in Wadi Isbayia area, south Sinai Peninsula, to test the efficiency of the VLF-EM method in the exploration of sulphide mineralization in arid environments. The VLF-EM field measurements, including tilt angle, real and imaginary components of the received VLF field, were carried out along fifteen profiles covering a quartz monzonite bedrock. Interpretation of the VLF measurements, in the light of geological information, has showed that sulphide minerals in the Wadi Isbayia area extend from the ground surface to a depth of about 200 m. However, the structural lineaments, especially faults, have controlled the distribution of the sulphide mineralization. A few of polished sections for rock samples, collected from the sites of the VLF-EM anomalies in the study area, have been prepared and examined by ore microscopy which confirmed the presence of pyrite and chalcopyrite as well as iron oxides, disseminated in the quartz monzonite bedrock. These results showed that the VLF-EM method is an effective tool in the exploration of sulphide minerals in the arid environments.  相似文献   
990.
通过野外实地考察测试,对水下收缩裂隙整体形成过程、裂隙内充填物沉积模式、影响因素等进行了详细讨论,并且建立了相应的地质理论模型。水下收缩裂隙的形成共分4个阶段,依次为:泥水混合物进入低洼地带的初始混浊状态;沉积压实稳定阶段;水位线下降,盐度增大,裂隙形成阶段;沉积裂隙充填阶段。其中“异常高压作用”,对于初始裂隙的形成、沉积物孔隙水的有效排出以及主要渗流通道的发育起到了重要作用。单一泥质地层裂隙内充填物沉积模式与沙泥互层的多旋回地层略有差异,主要表现为沙层的润滑作用以及对早期裂隙内充填物类型的影响。上述两种地层裂隙内充填物沉积特征均与后期充注期次相对应,表现出很好的韵律性。裂隙纵剖面中生物发育层的出现,对裂隙内充填物的物理、化学性质将产生重要影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号