首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   969篇
  免费   20篇
  国内免费   1篇
测绘学   25篇
大气科学   36篇
地球物理   227篇
地质学   436篇
海洋学   70篇
天文学   106篇
综合类   7篇
自然地理   83篇
  2020年   7篇
  2019年   10篇
  2018年   21篇
  2017年   16篇
  2016年   24篇
  2015年   12篇
  2014年   23篇
  2013年   46篇
  2012年   35篇
  2011年   37篇
  2010年   44篇
  2009年   57篇
  2008年   50篇
  2007年   39篇
  2006年   42篇
  2005年   52篇
  2004年   42篇
  2003年   50篇
  2002年   25篇
  2001年   22篇
  2000年   21篇
  1999年   12篇
  1998年   17篇
  1997年   14篇
  1996年   20篇
  1995年   8篇
  1994年   5篇
  1993年   12篇
  1992年   11篇
  1991年   13篇
  1990年   8篇
  1989年   12篇
  1988年   9篇
  1987年   12篇
  1986年   10篇
  1985年   15篇
  1984年   15篇
  1983年   8篇
  1982年   8篇
  1981年   10篇
  1980年   12篇
  1979年   9篇
  1978年   6篇
  1977年   6篇
  1976年   4篇
  1975年   8篇
  1974年   7篇
  1973年   4篇
  1970年   5篇
  1969年   5篇
排序方式: 共有990条查询结果,搜索用时 15 毫秒
981.
We analyze the water mass transformation in coarse (1°) and high (1/6°) resolution ocean simulations with the identical configuration of the CLIPPER model and interannual ERA15 forcing function. Climatological characteristics of surface water mass transformation in the two experiments are quite different. The high resolution experiment exhibits a stronger surface transformation in equatorial and tropical regions, in the Gulf Stream area and in the location of the formation of Subtropical Mode Water (STMW), associated with high levels of eddy kinetic energy. The coarse resolution experiment shows a better representation of the transformation rates corresponding to the densest subpolar mode waters and Labrador Sea Water (LSW). This is explained by the differences in lateral mixing procedures between high and coarse resolution experiments. The high resolution 1/6° run is eddy-resolving only in the tropics and mid-latitudes. In these areas eddies are found to enhance the process of water mass transformation compared to the isopycnal diffusion used to parameterized the eddies in the 1° model. Despite its 1/6° resolution, the high resolution model does not adequately represent eddies in the subpolar gyre and Labrador Sea. In these areas the high resolution model fails to correctly simulate water mass transformation because the lateral mixing (provided through the bi-harmonic sub-gridscale parameterization) of newly ventilated waters with surrounding waters is not efficient enough. In contrast in the coarse 1° resolution model, the strong lateral mixing and the unrealistically broad boundary currents imposed by the high diffusivity required for numerical stability mixes newly formed LSW waters with the warmer and saltier waters of the rim current. Finally, it results in a more effective representation of the surface water mass transformation in high latitudes in the 1° model. A possible impact of the increased lateral diffusion in high resolution experiment on the representation of re-stratification in the Labrador Sea was studied in sensitivity experiments with different lateral diffusion coefficients compared to the regional eddy-resolving 1/15° simulation in the subpolar North Atlantic. If the eddies are not resolved in subpolar latitudes (as in the case of 1/6° model), the GM90 parameterization with the coefficient close to 800 m2 s−1 provides the closest agreement with the solution of eddy-resolving 1/15° model.  相似文献   
982.
 The hydrologic structure of Taal Volcano has favored development of an extensive hydrothermal system whose prominent feature is the acidic Main Crater Lake (pH<3) lying in the center of an active vent complex, which is surrounded by a slightly alkaline caldera lake (Lake Taal). This peculiar situation makes Taal prone to frequent, and sometimes catastrophic, hydrovolcanic eruptions. Fumaroles, hot springs, and lake waters were sampled in 1991, 1992, and 1995 in order to develop a geochemical model for the hydrothermal system. The low-temperature fumarole compositions indicate strong interaction of magmatic vapors with the hydrothermal system under relatively oxidizing conditions. The thermal waters consist of highly, moderately, and weakly mineralized solutions, but none of them corresponds to either water–rock equilibrium or rock dissolution. The concentrated discharges have high Na contents (>3500 mg/kg) and low SO4/Cl ratios (<0.3). The Br/Cl ratio of most samples suggests incorporation of seawater into the hydrothermal system. Water and dissolved sulfate isotopic compositions reveal that the Main Crater Lake and spring discharges are derived from a deep parent fluid (T≈300  °C), which is a mixture of seawater, volcanic water, and Lake Taal water. The volcanic end member is probably produced in the magmatic-hydrothermal environment during absorption of high-temperature gases into groundwater. Boiling and mixing of the parent water give rise to the range of chemical and isotopic characteristics observed in the thermal discharges. Incursion of seawater from the coastal region to the central part of the volcano is supported by the low water levels of the lakes and by the fact that Lake Taal was directly connected to the China sea until the sixteenth century. The depth to the seawater-meteoric water interface is calculated to be 80 and 160 m for the Main Crater Lake and Lake Taal, respectively. Additional data are required to infer the hydrologic structure of Taal. Geochemical surveillance of the Main Crater Lake using the SO4/Cl, Na/K, or Mg/Cl ratio cannot be applied straightforwardly due to the presence of seawater in the hydrothermal system. Received: 12 February 1997 / Accepted: 26 January 1998  相似文献   
983.
In geological materials, anisotropy may arise due to different mechanisms and can be found at different scales. Neglecting anisotropy in traveltime tomographic reconstruction leads to artefacts that can obscure important subsurface features. In this paper, a geostatistical tomography algorithm to invert cross‐hole traveltime data in elliptically anisotropic media is presented. The advantages of geostatistical tomography are that the solution is regularized by the covariance of the model parameters, that known model parameters can be used as constraints and fitted exactly or within a prescribed variance and that stochastic simulations can be performed to appraise the variability of the solution space. The benefits of the algorithm to image anisotropic media are illustrated by two examples using synthetic georadar data and real seismic data. The first example confirms suspected electromagnetic anisotropy in the vadose zone caused by relatively rapid water content variations with respect to wavelength at georadar frequencies. The second presents how sonic log data can be used to constrain the inversion of cross‐well seismic data and how geostatistical simulations can be used to infer parameter uncertainty. Results of both examples show that considering anisotropy yields a better fit to the data at high ray angles and reduces reconstruction artefacts.  相似文献   
984.
Most of the extension fractures located in the Ethiopian rift are related to rift dynamics, and they have consistently similar orientations for hundreds of kilometers. The orientation of extension fracture gives the local extension direction which is perpendicular to its horns (end segments of an extension fracture). We have established clear geometrical relationships between tectonics and volcanism in the Main Ethiopian Rift by interpreting high-resolution images obtained from Landsat-TM and SPOT satellites and by quantitatively analyzing the geometry of extension fractures, elongated vents and linear volcanic clusters. Applying the relationships obtained, we show that extension fractures in the rift served as channels for magma rising to the surface, and that extension fractures underlie most of the elongated volcanic vents and linear volcanic clusters. The geometry of extension fractures beneath volcanic edifices can be deduced from the shape of elongated vents and pattern of linear volcanic clusters rooted on them. Utilizing the orientations of extension fractures directly observed and those inferred from elongated volcanic vents and linear clusters, we found that the extension direction of the Main Ethiopian Rift is northwest–southeast and that the direction has been rotated clockwise for about 20° in the time interval 2.83 to 0.023 Ma. The Recent axis of rift opening is oriented N40° and located closer to the southeastern escarpment giving an asymmetric geometry to the Main Ethiopian Rift (MER).  相似文献   
985.
Evidence from a field study on wind flow and sediment transport across a beach–dune system under onshore and offshore conditions (including oblique approach angles) indicates that sediment transport response on the back‐beach and stoss slope of the foredune can be exceedingly complex. The upper‐air flow – measured by a sonic anemometer at the top of a 3·5 m tower located on the dune crest – is similar to regional wind records obtained from a nearby meteorological station, but quite different from the near‐surface flow field measured locally across the beach–dune profile by sonic anemometers positioned 20 cm above the sand surface. Flow–form interaction at macro and micro scales leads to strong modulation of the near‐surface wind vectors, including wind speed reductions (due to surface roughness drag and adverse pressure effects induced by the dune) and wind speed increases (due to flow compression toward the top of the dune) as well as pronounced topographic steering during oblique wind approach angles. A conceptual model is proposed, building on the ideas of Sweet and Kocurek (Sedimentology 37 : 1023–1038, 1990), Walker and Nickling (Earth Surface Processes and Landforms 28 : 111–1124, 2002), and Lynch et al. (Earth Surface Processes and Landforms 33 : 991–1005, 2008, Geomorphology 105 : 139–146, 2010), which shows how near‐surface wind vectors are altered for four regional wind conditions: (a) onshore, detached; (b) onshore‐oblique, attached and deflected; (c) offshore, detached; and (d) offshore‐oblique, attached and deflected. High‐frequency measurements of sediment transport intensity during these different events demonstrate that predictions of sediment flux using standard equations driven by regional wind statistics would by unreliable and misleading. It is recommended that field studies routinely implement experimental designs that treat the near‐surface wind field as comprising true vector quantities (with speed and direction) in order that a more robust linkage between the regional (upper air) wind field and the sediment transport response across the beach–dune profile be established. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
986.
New bathymetric and geophysical data were collected in the region east of the island of Malaita during the SOPACMAPS II cruise of the French research vessel L'ATALANTE. This region, part of the Malaita Anticlinorium was interpreted as a piece of oceanic crust from the Ontong Java Plateau obducted over the old Solomon Islands arc during collision between the Pacific and Australian plates. It has been generally accepted that convergent motion between the Australia and Pacific plates since the Late Miocene was absorbed exclusively along the San Cristobal trench, southwest of the Solomon Islands Arc.Bathymetry, imagery, and geophysical data (magnetism, gravity, seismic) acquired during the SOPACMAPS II survey allow us to classify the successive parallel ridges mapped within the region as being recent volcanic, oceanic crust, or deformed sedimentary ridges.Seismic profiling provides evidence of successive compressive events along the Malaita margin caused by the relative motion between the Solomon Islands and the Pacific plate. The main phase of convergence probably occurred during Oligocene-early Miocene time, but some relative motion between the two domains are still being absorbed along the East Malaita boundary. The existence of active faulting in the sedimentary cover throughout the region and the present-day deformation of the outer sedimentary ridge is a good illustration of this phenomenon.  相似文献   
987.
Geostatistical techniques for spatial prediction and spatial simulation have been used in an innovative application to the study of weathering of natural building stone. The study investigates the differences in the spatial variation of permeability characteristics between fine‐ and coarse‐grained Stanton Moor building sandstone. Non‐destructive permeability measurements, using an unsteady‐state Portable Probe Permeameter, were made on three adjacent faces of two cubic blocks representative of fine‐ to medium‐grained and medium‐ to coarse‐grained Stanton Moor Sandstone. The findings provide greater understanding in the investigation of the durability characteristics of the Stanton Moor Sandstone and show that the spatial distribution and variability of permeability is more important in predicting the overall strength and weathering properties than mean permeability and absolute minimum and maximum values. The results suggest that both primary textural characteristics (such as grain size) and extent of cementation appear to be important factors in determining the overall durability properties of Stanton Moor Sandstone as a building stone. Geostatistical analysis has been shown to be an important tool in the characterization of spatial variation for the investigation of weathering of building stones. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
988.
This paper deals with the effects of wind on rockwall dynamics. On 5 and 6 January, 1988 very strong northwest winds (blizzard) were blowing onto the rockwall of Mount Saint-Pierre (alt.: 424 m), Gaspésie, Québec (Canada). The most violent recorded squall reached 99·4 km h?1. During this event, the summit plateau received a large amount of aeolian sediments originating from the shale rockwall that forms the mountain's northwest side. In the 15 to 20 m wide by 75 m long belt located along the top of the rockwall, over a 1200 m2 area, a continuous layer of debris completely covered the snow. This layer of debris had a mean thickness of 11·4 mm, which represents an accumulated volume in the order of 13 m3. Largely dominated by sand and granules (2–4 mm), the 28 samples collected for grain-size analysis also contained numerous thin shale flakes, many of which were longer than 10 mm. The largest flake measured had a width of 134 mm and a weight of 164·3 g. Six available 14C dates provide information concerning mean cliff-top aeolian sedimentation rate for the last thousand years (c. 1·8 mmyr?1).  相似文献   
989.
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号