首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   969篇
  免费   20篇
  国内免费   1篇
测绘学   25篇
大气科学   36篇
地球物理   227篇
地质学   436篇
海洋学   70篇
天文学   106篇
综合类   7篇
自然地理   83篇
  2020年   7篇
  2019年   10篇
  2018年   21篇
  2017年   16篇
  2016年   24篇
  2015年   12篇
  2014年   23篇
  2013年   46篇
  2012年   35篇
  2011年   37篇
  2010年   44篇
  2009年   57篇
  2008年   50篇
  2007年   39篇
  2006年   42篇
  2005年   52篇
  2004年   42篇
  2003年   50篇
  2002年   25篇
  2001年   22篇
  2000年   21篇
  1999年   12篇
  1998年   17篇
  1997年   14篇
  1996年   20篇
  1995年   8篇
  1994年   5篇
  1993年   12篇
  1992年   11篇
  1991年   13篇
  1990年   8篇
  1989年   12篇
  1988年   9篇
  1987年   12篇
  1986年   10篇
  1985年   15篇
  1984年   15篇
  1983年   8篇
  1982年   8篇
  1981年   10篇
  1980年   12篇
  1979年   9篇
  1978年   6篇
  1977年   6篇
  1976年   4篇
  1975年   8篇
  1974年   7篇
  1973年   4篇
  1970年   5篇
  1969年   5篇
排序方式: 共有990条查询结果,搜索用时 15 毫秒
31.
Using the diving submersible survey NAUTICA we investigated the central part of the Caribbean large igneous province (CLIP) to observe and sample internal portions of this proposed oceanic plateau. Most of the samples are gabbroic and doleritic rocks; basalts are scarce. Radiometric dating by 40Ar/39Ar incremental heating experiments indicate that the intrusive rocks are Campanian in age (81–75 Ma). In some places these intrusive rocks underlie older Santonian (85–83 Ma) extrusive basaltic rocks, suggesting that the Campanian rocks represent a sill injection and an underplating episode. Results of the diving program supplemented by information from ODP and DSDP drilling sites document a 20 m.y. period (94–75 Ma) of igneous activity in the submerged portion of the Caribbean large igneous province (CLIP). In the northern part of the Beata Ridge late Campanian and/or post Campanian uplift is documented by prominent Maastrichtian (71–65 Ma) erosion and the establishment of a Paleocene-middle Eocene (65–49 Ma) carbonate platform. During and after the uplift an extensional period is indicated by seismic images and the subsidence (3 km depth) of the carbonate platform. Paleocene ages (55–56 Ma) determined on some volcanic samples are attributed to localised decompression mantle melting that accompanied the extension. We document a prolonged period of magmatic and tectonic events that do not fit with the current models of short-lived plateau formation during mantle plume initiation but shares many similarities with the constructional histories of other oceanic large igneous provinces.  相似文献   
32.
33.
34.
The work of searching, recovering and quality control of ancient sea-level measurements at Brest is presented. This work enables us to complete a study carried out by Cartwright in 1972, which showed a decrease in the tidal M2 semi-diurnal amplitude of 1% per century. After including these ancient data, as well as the last four decades of observations in the analysis, our results show an increase of the amplitude of M2 after 1960 and a decrease before 1880, suggesting a long-period oscillation rather than a steady secular trend. To cite this article: N. Pouvreau et al., C. R. Geoscience 338 (2006).  相似文献   
35.
The crater lake of Kawah Ijen volcano contains extremely low pH (<0.4) waters with high SO4 (70000 mg/kg), Cl (21000 mg/kg), F (1500 mg/kg), Al (5000 mg/kg), Fe (2000 mg/kg) and trace metal (Cu 0.5, Zn 4, Pb 3 mg/kg) contents. These brines seep outward through the western crater rim and reappear on the other side as streamlets, which form the headwaters of the Banyupahit stream. The Banyupahit first mixes with fresh rivers and thermal springs in the Ijen caldera and then irrigates a coastal agricultural plain which is 30 km from the summit crater.We discuss the downstream composition changes affecting the Banyupahit waters by using stable isotope, chemical and mineralogical data collected from sites along the stream length. The saturation of the stream waters with respect to minerals was evaluated with SOLVEQ and WATEQ4F and compared with the geochemical observations. An aluminous mineralogy (alunogen, pickeringite, tamarugite and kalinite) develops in the upper part of the Banyupahit due to concentration of the headwaters by evaporation. Downstream attenuation of dissolved element concentrations results principally from dilution and from mineral precipitation. The stream pH changes from 0 at the source to >4 close to the mouth. The δD and δ18O values and the relative SO4–Cl–F contents of the Banyupahit waters indicate that the tributaries are mostly meteoric. Dissolved SO4 in the acidic stream come only from the crater lake seepages and are not involved later in microbially mediated reactions, as shown by their δ34S and δ18O values. Re-equilibration of the stream SO4 oxygen-isotope composition with H2O from tributaries does not occur.Calcium, SiO2, Al, Fe, K and SO4 behave non-conservatively in the stream waters. Gypsum, silica (amorphous or poorly ordered), a basic aluminum hydroxysulfate (basaluminite?), K-jarosite and amorphous ferric hydroxide may exert a solubility control on these elements along the entire stream length, or in certain stream sections, consistent with the thermochemical model results. Downstream concentration trends and mineral saturation levels suggest that precipitation of Sr-, Pb-rich barite and celestite consume Ba, Sr and Pb, whereas dissolved Cu, Pb and Zn may adsorb onto solid particles, especially after the junctions of the acidic stream with non-acidic rivers. We calculated that significant fluxes of SO4, F, Cl, Al, SiO2, Ti, Mn and Cu may reach the irrigation system, possibly causing serious environmental impacts such as soil acidification and induration.  相似文献   
36.
Erratum     
  相似文献   
37.
We present the results of a multidisciplinary study of the Ms = 6.2, 1995, June 15, Aigion earthquake (Gulf of Corinth, Greece). In order to constrain the rupture geometry, we used all available data from seismology (local, regional and teleseismic records of the mainshock and of aftershocks), geodesy (GPS and SAR interferometry), and tectonics. Part of these data were obtained during a postseismic field study consisting of the surveying of 24 GPS points, the temporary installation of 20 digital seismometers, and a detailed field investigation for surface fault break. The Aigion fault was the only fault onland which showed detectable breaks (< 4 cm). We relocated the mainshock hypocenter at 10 km in depth, 38 ° 21.7 N, 22 ° 12.0 E, about 15 km NNE to the damaged city of Aigion. The modeling of teleseismic P and SH waves provides a seismic moment Mo = 3.4 1018 N.m, a well constrained focal mechanism (strike 277 °, dip 33 °, rake – 77°), at a centroidal depth of 7.2 km, consistent with the NEIC and the revised Harvard determinations. It thus involved almost pure normal faulting in agreement with the tectonics of the Gulf. The horizontal GPS displacements corrected for the opening of the gulf (1.5 cm/year) show a well-resolved 7 cm northward motion above the hypocenter, which eliminates the possibility of a steep, south-dipping fault plane. Fitting the S-wave polarization at SERG, 10 km from the epicenter, with a 33° northward dipping plane implies a hypocentral depth greater than 10 km. The north dipping fault plane provides a poor fit to the GPS data at the southern points when a homogeneous elastic half-space is considered: the best fit geodetic model is obtained for a fault shallower by 2 km, assuming the same dip. We show with a two-dimensional model that this depth difference is probably due to the distorting effect of the shallow, low-rigidity sediments of the gulf and of its edges. The best-fit fault model, with dimensions 9 km E–W and 15 km along dip, and a 0.87 m uniform slip, fits InSAR data covering the time of the earthquake. The fault is located about 10 km east-northeast to the Aigion fault, whose surface breaks thus appears as secondary features. The rupture lasted 4 to 5 s, propagating southward and upward on a fault probably outcropping offshore, near the southern edge of the gulf. In the shallowest 4 km, the slip – if any – has not exceeded about 30 cm. This geometry implies a large directivity effect in Aigion, in agreement with the accelerogram aig which shows a short duration (2 s) and a large amplitude (0.5 g) of the direct S acceleration. This unusual low-angle normal faulting may have been favoured by a low-friction, high pore pressure fault zone, or by a rotation of the stress directions due to the possible dip towards the south of the brittle-ductile transition zone. This fault cannot be responsible for the long term topography of the rift, which is controlled by larger normal faults with larger dip angles, implying either a seldom, or a more recently started activity of such low angle faults in the central part of the rift.  相似文献   
38.
U-series systematics as well as Sr isotopes were measured on young seamount lavas from the Pitcairn hotspot collected during the Polynaut cruise. The combined U-series and Sr isotope data reveal typical mixing relationships between two endmembers. One typical ‘plume’ endmember with radiogenic 87Sr/86Sr and relatively low 230Th/238U and a ‘lithosphere’ endmember with less radiogenic 87Sr/86Sr and relatively larger 230Th/238U. Remarkably, all the lavas, except for a few arguably older samples, are characterized by 226Ra deficits relative to 230Th. On the basis of water content and trace element systematics, we argue that this is due to melting in the presence of phlogopite, which is only stable at lithosphere temperatures. A melting model including the diffusive exchange of elements among phlogopite, garnet and melt is used to constrain melting conditions of the lithosphere. These unusual 226Ra–230Th signatures can be explained by relatively slow melting rates at low matrix porosity. Our model also demonstrates that the effective partitioning behavior is dependent on the melting rate. A simple thermal model for lithosphere heating and melting is in good agreement with predicted melting rates.  相似文献   
39.
Detailed echo‐sounder and acoustic Doppler velocimeter measurements are used to assess the temporal and spatial structure of turbulent flow over a mobile dune in a wide, low‐gradient, alluvial reach of the Green River. Based on the geometric position of the sensor over the bedforms, measurements were taken in the wake, in transitional flow at the bedform crest, and in the internal boundary layer. Spatial distributions of Reynolds shear stress, turbulent kinetic energy, turbulence intensity, and correlation coefficient are qualitatively consistent with those over fixed, two‐dimensional bedforms in laboratory flows. Spectral and cospectral analysis demonstrates that energy levels in the lee of the crest (i.e. wake) are two to four times greater than over the crest itself, with minima over the stoss slope (within the developing internal boundary layer). The frequency structure in the wake is sharply defined with single, dominant peaks. Peak and total spectral and cross‐spectral energies vary over the bedform in a manner consistent with wave‐like perturbations that ‘break’ or ‘roll up’ into vortices that amalgamate, grow in size, and eventually diffuse as they are advected downstream. Fluid oscillations in the lee of the dune demonstrate Strouhal similarity between laboratory and field environments, and correspondence between the peak frequencies of these oscillations and the periodicity of surface boils was observed in the field. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号