首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26045篇
  免费   179篇
  国内免费   896篇
测绘学   1444篇
大气科学   2063篇
地球物理   4849篇
地质学   12255篇
海洋学   1128篇
天文学   1834篇
综合类   2171篇
自然地理   1376篇
  2021年   14篇
  2020年   14篇
  2019年   20篇
  2018年   4782篇
  2017年   4058篇
  2016年   2609篇
  2015年   254篇
  2014年   113篇
  2013年   91篇
  2012年   1039篇
  2011年   2769篇
  2010年   2083篇
  2009年   2380篇
  2008年   1957篇
  2007年   2407篇
  2006年   118篇
  2005年   263篇
  2004年   467篇
  2003年   477篇
  2002年   298篇
  2001年   86篇
  2000年   90篇
  1999年   41篇
  1998年   53篇
  1997年   20篇
  1996年   29篇
  1995年   18篇
  1994年   12篇
  1993年   18篇
  1992年   20篇
  1991年   20篇
  1990年   16篇
  1989年   23篇
  1988年   16篇
  1987年   16篇
  1986年   18篇
  1985年   26篇
  1984年   30篇
  1983年   25篇
  1982年   18篇
  1981年   45篇
  1980年   37篇
  1979年   15篇
  1978年   15篇
  1977年   13篇
  1976年   15篇
  1975年   16篇
  1971年   12篇
  1970年   12篇
  1969年   11篇
排序方式: 共有10000条查询结果,搜索用时 33 毫秒
71.
Although the Volterra models are non-parsimonious ones, they are being used because they can mimic dynamics of complex systems. However, applying and identification of the Volterra models using data may result in overfitting problem and uncertainty. In this investigation we evaluate capability of different wavelet forms for decomposing and compressing the Volterra kernels in order to overcome this problem by reducing the number of the model coefficients to be estimated and generating smooth kernels. A simulation study on a rainfall?runoff process over the Cache River watershed showed that the method performance is successful due to multi-resolution capacity of the wavelet analysis and high capability of the Volterra model. The results also revealed that db2 and sym2 wavelets have the same high potential in improving the linear Volterra model performance. However, QS wavelet was more successful in yielding smooth kernels. Moreover, the probability of overfitting while identifying the nonlinear Volterra model may be less than the linear model.  相似文献   
72.
Developing approaches to automate the analysis of the massive amounts of data sent back from the Moon will generate significant benefits for the field of lunar geomorphology. In this paper, we outline an automated method for mapping lunar landforms that is based on digital terrain analysis. An iterative self-organizing (ISO) cluster unsupervised classification enables the automatic mapping of landforms via a series of input raster bands that utilize six geomorphometric parameters. These parameters divide landforms into a number of spatially extended, topographically homogeneous segments that exhibit similar terrain attributes and neighborhood properties. To illustrate the applicability of our approach, we apply it to three representative test sites on the Moon, automatically presenting our results as a thematic landform map. We also quantitatively evaluated this approach using a series of confusion matrices, achieving overall accuracies as high as 83.34% and Kappa coefficients (K) as high as 0.77. An immediate version of our algorithm can also be applied for automatically mapping large-scale lunar landforms and for the quantitative comparison of lunar surface morphologies.  相似文献   
73.
The magnetotelluric (MT) method has been among the favorite supporting tools for seismic imaging of sub-salt and sub-basalt targets. In this paper we present an example from Kachchh, India (where basaltic rocks overlie Mesozoic sedimentary rocks), and discuss the feasibility of using MT method as an exploration tool in this geological setting. Our results highlight the difference in magnetotelluric response caused by the thin intrabasalt layering. The key issue addressed in this paper is what MT can and cannot provide in such geological settings. First, we compute apparent resistivity and phase response curves using representative resistivity-depth models and borehole data from the study area. Later, we compare these results to assess the plausibility of using MT to image the sub-volcanic sediments at Kachchh. Finally, we substantiate our discussion through one-dimensional inversion of the field observed MT data from this region that exhibits poor sensitivity of MT for thin basalt layers.  相似文献   
74.
Karst aquifers are highly susceptible to contamination, with numerous points of entry for contaminants through recharge features such as sinkholes, swallow holes and solutionally enlarged fractures. These recharge features may be filled or obscured at the surface, requiring the use of geophysical or remote sensing techniques for their identification. This study uses seismic refraction data collected at the Ft. Campbell Army Airfield (CAAF), Kentucky, USA, to test the hypothesis that refraction tomography is a useful tool for imaging bedrock depressions beneath thick overburden (greater than 20 m of unconsolidated sediment). Southeast of the main taxiway of CAAF seismic velocity tomograms imaged a bedrock low, possibly a closed depression, at a depth of 25 m that had been earlier identified through delay-time analysis of the same refraction data. Tomography suggests the bedrock low is about 250-m wide by 10-m deep at its widest point. High rates of contaminant vapor extraction over the western extension of this feature suggest a high concentration of contaminants above, and within, this filled bedrock low, the base of which may contain solutionally enlarged fractures (i.e. karst conduits) that could funnel these contaminants to the upper or lower bedrock aquifers. This study thus demonstrates the viability of seismic refraction tomography as a tool for identification of filled sinkholes and bedrock depressions in karst areas.  相似文献   
75.
In global studies investigating the Earth’s lithospheric structure, the spectral expressions for the gravimetric forward and inverse modeling of the global gravitational and crustal structure models are preferably used, because of their numerical efficiency. In regional studies, the applied numerical schemes typically utilize the expressions in spatial form. Since the gravity-gradient observations have a more localized support than the gravity measurements, the gravity-gradient data (such as products from the Gravity field and steady-state Ocean Circulation Explorer - GOCE - gravity-gradiometry satellite mission) could preferably be used in regional studies, because of reducing significantly the spatial data-coverage required for a regional inversion or interpretation. In this study, we investigate this aspect in context of a regional Moho recovery. In particular, we compare the numerical performance of solving the Vening Meinesz-Moritz’s (VMM) inverse problem of isostasy in spectral and spatial domains from the gravity and (vertical) gravity-gradient data. We demonstrate that the VMM spectral solutions from the gravity and gravity-gradient data are (almost) the same, while the VMM spatial solutions differ from the corresponding spectral solutions, especially when using the gravity-gradient data. The validation of the VMM solutions, however, reveals that the VMM spatial solution from the gravity-gradient data has a slightly better agreement with seismic models. A more detailed numerical analysis shows that the VMM spatial solution formulated for the gravity gradient is very sensitive to horizontal spatial variations of the vertical gravity gradient, especially in vicinity of the computation point. Consequently, this solution provides better results in regions with a relatively well-known crustal structure, while suppressing errors caused by crustal model uncertainties from distant zones. Based on these findings we argue that the gravity-gradient data are more suitable than the gravity data for a regional Moho recovery.  相似文献   
76.
The range of relative sea level rise in the northwestern South China Sea since the Last Glacial Maximum was over 100 m. As a result, lowland regions including the Northeast Vietnam coast, Beibu Gulf, and South China coast experienced an evolution from land to sea. Based on the principle of reconstructing paleogeography and using recent digital elevation model, relative sea level curves, and sediment accumulation data, this paper presents a series of paleogeographic scenarios back to 20 cal. ka BP for the northwestern South China Sea. The scenarios demonstrate the entire process of coastline changes for the area of interest. During the late glacial period from 20 to 15 cal. ka BP, coastline slowly retreated, causing a land loss of only 1×104 km2, and thus the land-sea distribution remained nearly unchanged. Later in 15–10 cal. ka BP coastline rapidly retreated and area of land loss was up to 24×104km2, causing lowlands around Northeast Vietnam and South China soon to be underwater. Coastline retreat continued quite rapidly during the early Holocene. From 10 to 6 cal. ka BP land area had decreased by 9×104km2, and during that process the Qiongzhou Strait completely opened up. Since the mid Holocene, main controls on coastline change are from vertical crustal movements and sedimentation. Transgression was surpassed by regression, resulting in a land accretion of about 10×104km2. Supported by Key Laboratory of Marginal Sea Geology, Chinese Academy of Sciences (Grant No. MSGL0711), the Guangdong Natural Science Foundation (Grant No. 04001309) and Open Fund of the Key Laboratory of Marine Geology and Environment, Chinese Academy of Sciences (Grant No. MGE2007KG04)  相似文献   
77.
Shallow landslides induced by heavy rainfall events represent one of the most disastrous hazards in mountainous regions because of their high frequency and rapid mobility. Recent advancements in the availability and accessibility of remote sensing data, including topography, land cover and precipitation products, allow landslide hazard assessment to be considered at larger spatial scales. A theoretical framework for a landslide forecasting system was prototyped in this study using several remotely sensed and surface parameters. The applied physical model SLope-Infiltration-Distributed Equilibrium (SLIDE) takes into account some simplified hypotheses on water infiltration and defines a direct relation between factor of safety and the rainfall depth on an infinite slope. This prototype model is applied to a case study in Honduras during Hurricane Mitch in 1998. Two study areas were selected where a high density of shallow landslides occurred, covering approximately 1,200 km2. The results were quantitatively evaluated using landslide inventory data compiled by the United States Geological Survey (USGS) following Hurricane Mitch’s landfall. The agreement between the SLIDE modeling results and landslide observations demonstrates good predictive skill and suggests that this framework could serve as a potential tool for the future early landslide warning systems. Results show that within the two study areas, the values of rates of successful estimation of slope failure locations reached as high as 78 and 75%, while the error indices were 35 and 49%. Despite positive model performance, the SLIDE model is limited by several assumptions including using general parameter calibration rather than in situ tests and neglecting geologic information. Advantages and limitations of this physically based model are discussed with respect to future applications of landslide assessment and prediction over large scales.  相似文献   
78.
In this paper, we formulate a finite element procedure for approximating the coupled fluid and mechanics in Biot’s consolidation model of poroelasticity. Here, we approximate the pressure by a mixed finite element method and the displacements by a Galerkin method. Theoretical convergence error estimates are derived in a continuous in-time setting for a strictly positive constrained specific storage coefficient. Of particular interest is the case when the lowest-order Raviart–Thomas approximating space or cell-centered finite differences are used in the mixed formulation, and continuous piecewise linear approximations are used for displacements. This approach appears to be the one most frequently applied to existing reservoir engineering simulators.  相似文献   
79.
Expansive clays undergo swelling when subjected to water. This can cause damage, especially to light weight structures, water conveyance canals, lined reservoirs, highways, and airport runways unless appropriate measures are taken. In this study, granulated blast furnace slag (GBFS) and GBFS-cement (GBFSC) were utilized to overcome or to limit the expansion of an artificially prepared expansive soil sample (sample A). GBFS and GBFSC were added to sample A in proportions of 5–25% by weight. The effects of these stabilizers on grain size distribution, Atterberg limits, swelling percentage and rate of swell of soil samples were determined. GBFS and GBFSC were shown to successfully decreasing the total amount of swell while increasing the rate of swell.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号