首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   280篇
  免费   5篇
  国内免费   2篇
测绘学   4篇
大气科学   16篇
地球物理   55篇
地质学   109篇
海洋学   48篇
天文学   29篇
自然地理   26篇
  2022年   2篇
  2020年   2篇
  2019年   6篇
  2018年   6篇
  2017年   11篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   21篇
  2012年   7篇
  2011年   10篇
  2010年   6篇
  2009年   20篇
  2008年   13篇
  2007年   5篇
  2006年   5篇
  2005年   7篇
  2004年   8篇
  2003年   5篇
  2002年   10篇
  2001年   4篇
  2000年   12篇
  1999年   10篇
  1998年   6篇
  1997年   6篇
  1996年   6篇
  1995年   9篇
  1994年   4篇
  1993年   4篇
  1991年   2篇
  1990年   6篇
  1989年   8篇
  1988年   4篇
  1986年   2篇
  1985年   6篇
  1984年   5篇
  1982年   7篇
  1981年   5篇
  1980年   2篇
  1979年   5篇
  1975年   2篇
  1974年   3篇
  1973年   3篇
  1970年   2篇
  1940年   1篇
  1928年   1篇
  1912年   1篇
  1910年   1篇
  1892年   1篇
  1889年   1篇
排序方式: 共有287条查询结果,搜索用时 15 毫秒
181.
High‐resolution vertical and lateral gradients and variations in sediment mass physical properties were derived from measurements in box cores, on the scale of millimeters, tens of centimeters, and kilometers from typical, relatively broad areas of the northern California continental slope in the Cape Mendocino area at water depths from 380 to 940 m. Such data are important as a control on comparisons of different sediment suites, as well as providing limits for realistic flux calculations of dissolved inorganic and biochemical species and pollutants. The sediments studied have relatively constant organic carbon contents (OC ? 1.75 wt%) and bulk mineralogy. They range from silty sands (~45% sand, 40% silt) to clayey silts (~63% silt, ~35% clay) and are extensively bioturbated. Physical property variations between subcores (~25 to 35 cm in length), taken from the same box core, increase with increasing clay content. For coarse‐grained sediments, mean down‐core differences in physical property values between related subcores are small, averaging 3.6% for water content, 4% for porosity, 0.026 Mg/m3 for wet bulk density, and 0.1 for void ratio. Subcore variations for fine‐grained sediments are generally significantly larger, averaging 9.8% for water content, 1.52% for porosity, 0.027 Mg/m3 for wet bulk density, and 0.3 for void ratio (box core 125). Millimeter variations of physical properties from horizontal 12‐cm‐long subcores indicate a maximum range of lateral variation of 18.2% for water content, 8% for porosity, 0.14 Mg/m3 for wet bulk density, and0.6 for void ratio.  相似文献   
182.
Fe isotopes are a potential tool for tracing the biogeochemical redox cycle of Fe in the ocean. Specifically, it is hypothesized that Fe isotopes could enable estimation of the contributions from multiple Fe sources to the dissolved Fe budget, an issue that has received much attention in recent years. The first priority however, is to understand any Fe isotope fractionation processes that may occur as Fe enters the ocean, resulting in modification of original source compositions. In this study, we have investigated the Fe inputs from a basalt-hosted, deep-sea hydrothermal system and the fractionation processes that occur as the hot, chemically reduced and acidic vent fluids mix with cold, oxygen-rich seawater.The samples collected were both end-member vent fluids taken from hydrothermal chimneys, and rising buoyant plume samples collected directly above the same vents at 5°S, Mid-Atlantic Ridge. Our analyzes of these samples reveal that, for the particulate Fe species within the buoyant plume, 25% of the Fe is precipitated as Fe-sulfides. The isotope fractionation caused by the formation of these Fe-sulfides is δFe(II)–FeS = +0.60 ± 0.12‰.The source isotope composition for the buoyant plume samples collected above the Red Lion vents is calculated to be −0.29 ± 0.05‰. This is identical to the value measured in end-member vent fluids collected from the underlying “Tannenbaum” chimney. The resulting isotope compositions of the Fe-sulfide and Fe-oxyhydroxide species in this buoyant plume are −0.89 ± 0.11‰ and −0.19 ± 0.09‰, respectively. From mass balance calculations, we have been able to calculate the isotope composition of the dissolved Fe fraction, and hypothesize that the isotope composition of any stabilised dissolved Fe species exported to the surrounding ocean may be heavier than the original vent fluid. Such species would be expected to travel some distance from areas of hydrothermal venting and, hence, contribute to not only the dissolved Fe budget of the deep-ocean but also it’s dissolved Fe isotope signature.  相似文献   
183.
This paper describes a new Heterodyne Array Receiver Program (HARP) and Auto-Correlation Spectral Imaging System (ACSIS) that have recently been installed and commissioned on the James Clerk Maxwell Telescope. The 16-element focal-plane array receiver, operating in the submillimetre from 325 to 375 GHz, offers high (three-dimensional) mapping speeds, along with significant improvements over single-detector counterparts in calibration and image quality. Receiver temperatures are ∼120 K across the whole band, and system temperatures of ∼300 K are reached routinely under good weather conditions. The system includes a single-sideband (SSB) filter so these are SSB values. Used in conjunction with ACSIS, the system can produce large-scale maps rapidly, in one or more frequency settings, at high spatial and spectral resolution. Fully sampled maps of     size can be observed in under 1 h.
The scientific need for array receivers arises from the requirement for programmes to study samples of objects of statistically significant size, in large-scale unbiased surveys of galactic and extra-galactic regions. Along with morphological information, the new spectral imaging system can be used to study the physical and chemical properties of regions of interest. Its three-dimensional imaging capabilities are critical for research into turbulence and dynamics. In addition, HARP/ACSIS will provide highly complementary science programmes to wide-field continuum studies and produce the essential preparatory work for submillimetre interferometers such as the Submillimeter Array (SMA) and Atacama Large Millimeter/Submillimeter Array (ALMA).  相似文献   
184.
White steenbras Lithognathus lithognathus (Teleostei: Sparidae) is an overexploited marine fish species endemic to South Africa. Overexploitation in recreational, subsistence and commercial fisheries has resulted in stock collapse and the need for improved management of the species. Adults are thought to undertake large-scale annual spawning migrations, yet studies of their movement indicate low levels of connectivity among coastal regions. To address this, mitochondrial DNA sequencing and genotyping of microsatellite loci in the nuclear genome were conducted to determine the genetic stock structure and level of gene flow in this species. Genetic diversity was high throughout the species’ core distribution, with no evidence of isolation by way of distance or localised spawning. Low, non-significant pairwise fixation indices (FST, RST and Jost’s Dest) indicated low genetic differentiation and high levels of gene flow. The observed results, and agreement between mitochondrial and microsatellite DNA, confirm that white steenbras exists as a single genetic stock with high levels of gene flow throughout its distribution.  相似文献   
185.
Further development of process‐based spatial models is needed to facilitate explanation in landscape ecology. We discuss the dual modeling goals of prediction and explanation and identify challenges faced in explaining landscape patterns. These challenges are especially acute in attempts to explain patterns that result from complex adaptive systems. We compare examples of two process models used to describe landscape changes in Yellowstone National Park as a consequence of predator‐prey interactions. Generative landscape science is offered as a complementary approach to explanation, combining models of candidate processes that are believed to give rise to observed patterns with empirical observations.  相似文献   
186.
Adaptive management is the pathway to effective conservation, use and management of Australia's coastal catchments and waterways. While the concepts of adaptive management are not new, applications involving both assessment and management responses are indeed limited at the national and regional scales. This paper outlines the components of a systematic framework for linking scientific knowledge, existing tools, planning approaches and participatory processes to achieve healthy regional partnerships between community, industry, government agencies and science providers to overcome institutional barriers and uncoordinated monitoring. The framework developed by the Coastal CRC (www.coastal.crc.org.au/amf/amf/_index.htm) is hierarchical in the way it displays information to allow associated frameworks to be integrated, and represents a construct in which processes, information, decision tools and outcomes are brought together in a structured and transparent way for adaptive catchment and coastal management. This paper proposes how an adaptive management approach could be used to benefit the implementation of the Reef Water Quality Protection Plan (RWQPP).  相似文献   
187.
188.
The vertical distributions of excess 210Pb and fall out 239, 240Pu imply a uniform sedimentation rate of 1·4–1·6 cm year?1 from 0 to 105–110 cm. This sediment accumulation rate is compatible with sulfate reduction rate data from this location. Below 70 cm only ‘aged’ refractory carbon is present (CR = 1·8% C) with an age of approximately 2400 years. This phase is present in a number of locations across Long Island Sound. Planktonic carbon (CP) is present above the 60–67 cm horizon. A value of 1·0 for AP (14C activity) at 32–37 cm was taken, AP = 1·285 was used for contemporary plankton. This was obtained by correcting the measured AP of a plankton tow sample for admixed refractory carbon. These values were then used to calculate CR, CP and CF (fossil carbon) at 32–37 cm and 6–12 cm. The only values compatible with the known sulfate reduction rate data are CR equal to pre 60–67 cm levels (1·6–1·8% C), CF being 0·3% C at both depths, and CP decreasing with depth from 0·3 to 0·4% C at 6–12 cm to close to zero at 32–37 cm.  相似文献   
189.
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号