Soil moisture simulation and prediction in semi-arid regions are important for agricultural production,soil conservation and climate change.However,considerable heterogeneity in the spatial distribution of soil moisture,and poor ability of distributed hydrological models to estimate it,severely impact the use of soil moisture models in research and practical applications.In this study,a newly-developed technique of coupled(WA-ANN) wavelet analysis(WA) and artificial neural network(ANN) was applied for a multi-layer soil moisture simulation in the Pailugou catchment of the Qilian Mountains,Gansu Province, China.Datasets included seven meteorological factors:air and land surface temperatures,relative humidity,global radiation, atmospheric pressure,wind speed,precipitation,and soil water content at 20,40,60,80,120 and 160 cm.To investigate the effectiveness of WA-ANN,ANN was applied by itself to conduct a comparison.Three main findings of this study were:(1) ANN and WA-ANN provided a statistically reliable and robust prediction of soil moisture in both the root zone and deepest soil layer studied(NSE >0.85,NSE means Nash-Sutcliffe Efficiency coefficient);(2) when input meteorological factors were transformed using maximum signal to noise ratio(SNR) and one-dimensional auto de-noising algorithm(heursure) in WA, the coupling technique improved the performance of ANN especially for soil moisture at 160 cm depth;(3) the results of multi-layer soil moisture prediction indicated that there may be different sources of water at different soil layers,and this can be used as an indicator of the maximum impact depth of meteorological factors on the soil water content at this study site.We conclude that our results show that appropriate simulation methodology can provide optimal simulation with a minimum distortion of the raw-time series;the new method used here is applicable to soil sciences and management applications. 相似文献
New measurements of sulfur dioxide (SO2) and monoxide (SO) in the atmosphere of Venus by SPICAV/SOIR instrument onboard Venus Express orbiter provide ample statistics to study the behavior of these gases above Venus’ clouds. The instrument (a set of three spectrometers) is capable to sound atmospheric structure above the clouds in several observation modes (nadir, solar and stellar occultations) either in the UV or in the near IR spectral ranges. We present the results from solar occultations in the absorption ranges of SO2 (190–230 nm, and at 4 μm) and SO (190–230 nm). The dioxide was detected by the SOIR spectrometer at the altitudes of 65–80 km in the IR and by the SPICAV spectrometer at 85–105 km in the UV. The monoxide’s absorption was measured only by SPICAV at 85–105 km. We analyzed 39 sessions of solar occultation, where boresights of both spectrometers are oriented identically, to provide complete vertical profiling of SO2 of the Venus’ mesosphere (65–105 km). Here we report the first firm detection and measurements of two SO2 layers. In the lower layer SO2 mixing ratio is within 0.02–0.5 ppmv. The upper layer, also conceivable from microwave measurements by Sandor et al. (Sandor, B.J., Todd Clancy, R., Moriarty-Schieven, G., Mills, F.P. [2010]. Icarus 208, 49–60) is characterized by SO2 increasing with the altitude from 0.05 to 2 ppmv, and the [SO2]/[SO] ratio varying from 1 to 5. The presence of the high-altitude SOx species could be explained by H2SO4 photodissociation under somewhat warmer temperature conditions in Venus mesosphere. At 90–100 km the content of the sulfur dioxide correlates with temperature increasing from 0.1 ppmv at 165–170 K to 0.5–1 ppmv at 190–192 K. It supports the hypothesis of SO2 production by the evaporation of H2SO4 from droplets and its subsequent photolysis at around 100 km. 相似文献
Based on the design principles of economic rationality and safety, multiple-pivot pile anchorage approach was used as the supporting engineering of a tall building with a deep foundation ditch. The designs, such as anchor arm, single pile and the whole, were set up in accordance with the calculations of the internal force from the equivalent beam and Yamagata Kunio methods. Moreover, the rationality of the design was estimated using the stability checks. FLAC3D was used for calculating the accuracy of the design. Using FLAC3D to simulating ditch cutting and supporting processes can obtain the equivalent results as the theory analysis in the displacement of ditch surrounding wall, the stress field and stress distribution. 相似文献
Dinoflagellate Alexandrium catenella is a cosmopolitan bloom-forming species with complex life cycle, the formation and germination of resting cysts are critical for its bloom dynamics. In the coastal waters of Qinhuangdao, A. catenella has been identified as the major causative agent for paralytic shellfish poisoning, but there is little knowledge concerning its resting cysts in this region. In this study, three surveys were carried out along the coast of Qinhuangdao from 2020 to 2021 to map the distribution of A. catenella resting cysts, using a quantitative PCR (qPCR) assay specific for A. catenella. The resting cysts were detected in surface sediments during all the three surveys, and their distribution patterns were similar. High abundance of resting cysts (maximum 1 300 cysts/g sediment (wet weight)) were found in a region (119.62°E–119.99°E, 39.67°N–39.98°N) northeast to the coastal waters of Qinhuangdao, where surface sediments were mainly composed of clay and silt (percentage above 50%). Prior to the formation of the A. catenella bloom in March 2021, the abundance of A. catenella vegetative cells in seawater had extremely significant positive correlation with the abundance of resting cysts in surface sediments, reflecting the important role of resting cysts in the initiation of A. catenella blooms. As far as we know, this is the first report on the distribution of A. catenella cysts along the coast of Qinhuangdao. The results will offer a sound basis for the future monitoring and mitigation of toxic A. catenella blooms and paralytic shellfish poisoning events in this region.