首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   342篇
  免费   12篇
  国内免费   2篇
测绘学   9篇
大气科学   30篇
地球物理   99篇
地质学   122篇
海洋学   23篇
天文学   50篇
自然地理   23篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   9篇
  2017年   6篇
  2016年   8篇
  2015年   5篇
  2014年   12篇
  2013年   17篇
  2012年   11篇
  2011年   7篇
  2010年   26篇
  2009年   11篇
  2008年   15篇
  2007年   9篇
  2006年   15篇
  2005年   14篇
  2004年   18篇
  2003年   11篇
  2002年   14篇
  2001年   7篇
  2000年   11篇
  1999年   10篇
  1998年   8篇
  1997年   8篇
  1996年   9篇
  1995年   2篇
  1994年   5篇
  1993年   5篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   5篇
  1984年   6篇
  1983年   5篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1979年   3篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1974年   4篇
  1931年   1篇
  1926年   1篇
  1924年   1篇
排序方式: 共有356条查询结果,搜索用时 15 毫秒
351.
For studying recent crustal movements and their relation to earthquake occurrence in large scales, the National Research Institute of Astronomy and Geophysics (NRIAG), Helwan, Cairo, Egypt started in 2006 the establishment of the Egyptian Permanent GPS Network (EPGN). Beginning with 4 stations in 2007, 15 stations were operational at the end of 2011. In addition, a station in Alexandria of the French “Centre d'Études Alexandrines” (CEALX) was added as station to the EPGN. Nowadays, 16 stations are operational and an extension to 20 in the near future is expected. The collected EPGN data of the last 6 years are used in this work to throw light upon the present state of recent crustal movement of the whole of Egypt. Bernese software V. 5.0 was used for processing the collected data according to the IGS standards. In addition, selected IGS, AFREF, and EPN sites are processed for reference frame definition. In this first comprehensive analysis of the permanent network, a complete and consistent evaluation resulted in the first estimates of present day horizontal velocities and coordinate time series.  相似文献   
352.
The last 20 years have seen a manifold increase in the application of numerical simulations in the earth sciences. This contribution aims to provide an overview of the possibilities of using numerical techniques, in particular the numerical simulation package Elle, as an aid in the training for microstructural interpretation in rocks. Three sets of experiments are described to illustrate the range of simulations currently possible, investigating the effects of grain growth, polyphase deformation and dynamic recrystallisation. Numerical simulations of static annealing of a pre-deformed natural sample show that Crystallographic Preferred Orientations can still be used for the interpretation of kinematic and deformation conditions, even after substantial postdeformational annealing. However, the grain network characteristics such as grain size, grain size distribution, boundary shapes and aspect ratios are rapidly altered during annealing, especially if the grains possessed highly contrasting internal strain energies.  相似文献   
353.
Hot springs in the Marsyandi Valley, Nepal, vent CO2 sourced from metamorphic fluids that mix with shallow groundwaters before degassing near the Earth's surface. The δ13C of spring waters ranges up to + 13‰, while that of the coexisting free gas phase is close to ? 4‰. Empirical and thermodynamic modelling of this isotopic fractionation suggests > 97 ± 1% CO2 degassing. The calculated minimum total CO2 degassing in the Marsyandi catchment is 5.4 × 109 mol/yr from a Cl-based estimate of the spring water discharge to the Marsyandi River and the fraction of CO2 degassed. Extrapolated to the whole of the Himalayas, this implies a probable minimum metamorphic CO2 flux of 0.9 × 1012 mol/yr, or ~ 13% of solid Earth CO2 degassing. The calculated flux is a factor of three greater than the estimated CO2 drawdown by silicate weathering in the Himalayas. Himalayan metamorphic degassing contributes a significant fraction of the global solid Earth CO2 flux and implies that metamorphism may cause changes in long-term climate that oppose those resulting from the orogenic forcing of chemical weatherability.  相似文献   
354.
Speleoseismology is the investigation of earthquake records in caves. Traces can be seen in broken speleothems, growth anomalies in speleothems, cave sediment deformation structures, displacements along fractures and bedding plane slip, incasion (rock fall) and co-seismic fault displacements. Where earthquake origins can be proven, these traces constitute important archives of local and even regional earthquake activity. However, other processes that can generate the same or very similar deformation features have to be excluded before cave damage can be interpreted as earthquake induced. Most sensitive and therefore most valuable for the tracing of strong earthquake shocks in caves are long and slender speleothems, such as soda straws, and deposits of well-bedded, water-saturated silty sand infillings, particularly in caves close to the earth's surface. Less easily proven is a co-seismic origin of an incasion and other forms of cave damage. The loads and creep movements of sediment and ice fillings in caves can cause severe damage to speleothems which have been frequently misinterpreted as evidence of earthquakes. For the dating of events in geological archives, it is important to demonstrate that such events happened at approximately the same time, i.e. within the error bars of the dating methods. A robust earthquake explanation for cave damage can only be achieved by the adoption of appropriate methods of direct dating of deformation events in cave archives combined with correlation of events in other geological archives outside caves, such as the deformation of lake and flood-plain deposits, locations of rock falls and active fault displacements.  相似文献   
355.
In a previous study, we described proximity effects on surfaces of the semiconducting minerals galena and pyrite, whereby a chemical reaction at one surface site modifies the reactivity of a remote surface site several Ångstroms or even nanometers away (Becker et al., 2001). The modification of interest does not arise because of a direct “through space” interaction between the two sites, but rather an indirect interaction via the electronic structure of the substrate. Here we investigate the distance and direction dependence of proximity effects using quantum mechanical modeling. The direct and indirect interactions between co-adsorbed oxygen atoms and between adsorbed oxygen atoms and point defects on vacuum-terminated galena (100) surfaces were modeled. Density functional theory cluster and plane wave pseudopotential calculations were used to calculate the modifications to the adsorption energy as a function of separation. Energy-distance plots indicate that the proximity effect energy can become very strong at separations decreasing below about 5 to 6 Å, and persist at increasing separations up to 12 Å in a slowly decaying form. A strong attractive indirect interaction out-competes direct electrostatic repulsion for O-vacancy interactions. An oscillatory asymptotic behavior is found for co-adsorbed O-O indirect interactions, which indicates that the proximity effect energy can vary with surface crystallographic direction. It implies the presence of a strong organizing force on like adatoms that may explain the progressive oxidation of certain sulfide minerals by patchwork growth. These findings begin to pave the way for improved adsorption isotherms and extended surface complexation models that will include the specific influence of semiconductor-type proximity effects.  相似文献   
356.
We measure the degree of consistency between published models of azimuthal seismic anisotropy from surface waves, focusing on Rayleigh wave phase-velocity models. Some models agree up to wavelengths of ∼2000 km, albeit at small values of linear correlation coefficients. Others are, however, not well correlated at all, also with regard to isotropic structure. This points to differences in the underlying data sets and inversion strategies, particularly the relative 'damping' of mapped isotropic versus anisotropic anomalies. Yet, there is more agreement between published models than commonly held, encouraging further analysis. Employing a generalized spherical harmonic representation, we analyse power spectra of orientational (2Ψ) anisotropic heterogeneity from seismology. We find that the anisotropic component of some models is characterized by stronger short-wavelength power than the associated isotropic structure. This spectral signal is consistent with predictions from new geodynamic models, based on olivine texturing in mantle flow. The flow models are also successful in predicting some of the seismologically mapped patterns. We substantiate earlier findings that flow computations significantly outperform models of fast azimuths based on absolute plate velocities. Moreover, further evidence for the importance of active upwellings and downwellings as inferred from seismic tomography is presented. Deterministic estimates of expected anisotropic structure based on mantle flow computations such as ours can help guide future seismologic inversions, particularly in oceanic plate regions. We propose to consider such a priori information when addressing open questions about the averaging properties and resolution of surface and body wave based estimates of anisotropy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号