首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   0篇
大气科学   2篇
地球物理   3篇
地质学   35篇
海洋学   3篇
天文学   1篇
自然地理   1篇
  2019年   1篇
  2017年   2篇
  2013年   3篇
  2012年   1篇
  2011年   4篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2007年   6篇
  2006年   7篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  1999年   1篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1982年   1篇
  1979年   1篇
  1965年   1篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
31.
One of the main tectonic boundaries of the Variscan Belt in the Iberian Peninsula is the Ossa-Morena/Central Iberian contact. This contact is marked by a highly deformed unit (Central Unit) which recorded an initial high-pressure/high-temperature metamorphic evolution. Rb-Sr whole-rock isotopic data from three gneissic bodies cropping out in the Central Unit yield two Late Proterozoic ages (690 ± 134 and 632 ± 103 Ma) and an early Palaeozoic age (495 ± 13 Ma), which we interpret as protolith ages. The two Late Proterozoic orthogneisses show initial 87Sr/86Sr ratios typical of mantle-derived materials or those with significant mantle participation (87Sr/86Sr > 0.709). These new radiometric data, together with ages previously published and the structural evolution of the Central Unit, lead to the conclusions that: (1) there are magmatic protoliths of Late Proterozoic and Early Palaeozoic ages; (2) the metamorphic evolution of this area, including the high-pressure event, belongs to the Variscan orogenic cycle; (3) the deformations observed affect the rocks of the entire Central Unit, accordingly they are post-Ordovician, i.e. Variscan; and (4) consequently, the Ossa-Morena/Central Iberian contact is interpreted here as a Variscan suture.  相似文献   
32.
Remediation of contaminated aquifers demands a reliable characterization of hydraulic connectivity patterns. Hydraulic diffusivity is possibly the best indicator of connectivity. It can be derived using the tidal response method (TRM), which is based on fitting observations to a closed-form solution. Unfortunately, the conventional TRM assumes homogeneity. The objective of this study was to overcome this limitation and use tidal response to identify preferential flowpaths. Additionally, the procedure requires joint inversion with hydraulic test data. These provide further information on connectivity and are needed to resolve diffusivity into transmissivity and storage coefficient. Spatial variability is characterized using the regularized pilot points method. Actual application may be complicated by the need to filter tidal effects from the response to pumping and by the need to deal with different types of data, which we have addressed using maximum likelihood methods. Application to a contaminated artificial coastal fill leads to flowpaths that are consistent with the materials used during construction and to solute transport predictions that compare well with observations. We conclude that tidal response can be used to identify connectivity patterns. As such, it should be useful when designing measures to control sea water intrusion.  相似文献   
33.
34.
Central Iberian Variscan granite batholiths and anatectic complexes are punctuated by coeval stocks of hydrous, high-K calc-alkaline, ultrabasic to intermediate rock series. Despite their overall calc-alkaline affinity, the mafic–ultramafic members contain high-Ti amphibole oikocrysts rimmed by lower-Ti amphibole ± cummingtonite and high-Ti amphibole replacing early phlogopite. To understand the factors controlling the saturation of high-Ti amphibole in the parental magmas, clinopyroxene-melt, phlogopite-melt and amphibole-melt relationships are reviewed. This analysis reveals that for melts with intermediate compositions, the affinity of TiO2 for amphibole rises in alkalic magmas. Accordingly, mildly alkalic trachytoid to subalkaline medium- to high-K andesite and dacite compositions are estimated for interstitial high-Ti amphibole-saturated melts. Amphibole Ce/Pb ratios reveal a mantle–crust hybrid nature for interstitial melts with subalkaline trachytoid compositions. The hydrous character of the Variscan basic magmas favoured an overall magmatic evolutionary trend with a low rate of variation of Na2O with respect to silica during amphibole crystallization. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
35.
The syenites of Piranshahr pluton form homogeneous mesoperthite-rich rocks which are exposed over a large area (>30 km2). With >85% modal composition of feldspar and rare ferromagnesian minerals, the syenites are petrographically suitable for feldspar exploration. The chemical composition of the Piranshahr syenites (i.e., high Al2O3 and (Na2O + K2O)) is also appropriate for potential feldspar mining. By means of an inexpensive concentration procedure that includes high-intensive magnetic separation and cation collector floatation, it is possible to achieve the needed feldspar composition (high Al2O3 (~20%), (Na2O + K2O) >12.5% and low FeOtot <0.25) for a marketable product. These data confirm economic potential of Piranshahr syenites as a huge feldspar source from the geologic and beneficiation perspectives.  相似文献   
36.
Abstract

The Meighen Ice Cap synoptic climate classification system, developed from the study of six years of summer meteorological and glaciological observations, appears to account for significant variations in the energy‐ and mass‐balance climates of the ice cap. In relating the summer frequency of the three synoptic types to fourteen years of mass‐balance measurements, it was found that variations in surface conditions, solar angle and type of precipitation could be accounted for by the relative sequence of synoptic types. Further it was shown that the types could be represented by the position of the dominant 500‐mb cold Low influencing Meighen Island, thus providing a link between the mass balance and the general circulation.

Dominance of the winter pattern of a 500‐mb Low in the Hudson Bay –Baffin Island region throughout the summer season is capable of maintaining Meighen Ice Cap at its present size. A shift of the 500‐mb Low from the winter position directly to the Beaufort Sea or adjoining Polar Ocean area is capable of increasing the size of the ice cap. On the other hand, a shift of the 500‐mb vortex to the Asiatic side of the Polar Ocean before taking up position in the Beaufort Sea – Polar Ocean area produces negative mass‐balance conditions. When the 500‐mb Low remains on the Asiatic side of the Polar Ocean during most of the summer season the slow accumulation of two decades of Polar Ocean years is destroyed.  相似文献   
37.
Neoglacial and Little Ice Age (LIA) limits occur within 2km of the Inland Ice margin in the Kangerlussuaq area on west Greenland. The LIA limit is clearly demarcated by ice-cored and non-ice-cored moraines, out-wash surfaces and trimlines. Rhizocarpon sp. thalli of ≥16mm on these landforms indicate a 1-2km retreat of the Inland Ice in the past c. 100 years, coincident with peripheral thinning of the ice. An older neoglacial moraine host of Rhizocarpon sp. thalli <40 mm indicates a minimum limiting age of <400 BP, whereas Optically Stimulated Luminescence (OSL) ages on aeolian silt capping the moraine yield close limiting ages of c. 2000 BP. Aeolian silt deposition beyond neoglacial limits yields OSL ages of c. 3000 BP, potentially coeval with advance of the Inland Ice. Aeolian sedimentation and the inferred age of the moraine are coincident with pronounced cooling inferred from palaeolimnological records from west and south Greenland. This neoglacial event at c. 2000 BP is probably of similar extent to the LIA maximum, because of the paucity of preserved moraine remnants.  相似文献   
38.
39.
Summary Evaporation and sensible heat flux have been calculated for each month over the Polar Ocean and the Norwegian-Barents Sea. Sverdrup's evaporation formula was used, and it was first examined how the K-coefficient in that formula depends on the wind speed frequency distribution. Thus the effect of the Arctic wind conditions could be taken into account. Seasonal maps were constructed of mean wind speed. Previously obtained surface temperatures were used, but some additional examinations were carried out, using various assumptions for extreme surface temperatures in summer and winter.Evaporation and sensible heat flux were calculated separately for the following areas: Central Polar Ocean, Kara-Laptev Sea, East Siberian Sea, Beaufort Sea, and belts of 5° latitude of the Norwegian-Barents Sea.The values for the different areas are presented in tables and figures. Evaporation over ice surfaces has a double maximum—in spring and fall—and a main minimum in winter. Over open water surfaces the evaporation shows a summer minimum and a broad maximum in winter. If small parts of the ocean were to remain open longer in the fall, or during the whole winter, the heat loss would increase very rapidly.Sensible heat flux is often calculated from evaporation by theBowen ratio. The small evaporation values over the Polar Ocean give unreliable values for sensible heat flux, and instead the formula byShuleikin was used. This permits the determination of sensible heat flux independent of evaporation. The characteristic sensible heat flux curves are quite similar to the evaporation curves. The open water areas in the Polar Ocean show very high values for sensible heat flux. One percent open water, from October to May would increase the heat flux from the Central Polar Ocean from 3.7 to 5.2 Kcal cm–2, year–1. Open areas must remain small as there is not sufficient energy available to maintain such fluxes.Finally, a table gives the monthly values of the total heat loss for the various areas, by evaporation and sensible heat flux.
Zusammenfassung Monatswerte für Verdunstung und Wärmefluß wurden für das Polarmeer und für Nordmeer-Barentssee berechnet. Zur Verdungstungsberechnung wurde die Formel vonSverdrup benutzt, deren K-Koeffizient in seiner Windabhängigkeit neu berechnet wurde. Auf Grund neu konstruierter jahreszeitlicher Karten der mittleren Windgeschwindigkeit konnten die arktischen Windverhältnisse berücksichtigt werden. Wegen der Unsicherheit früher bestimmter Oberflächentemperaturen wurden zusätzliche Berechnungen für Extremfälle im Sommer und Winter durchgeführt, um mögliche Fehlerquellen abzuschätzen. Verdunstung sowie Wärmefluß wurden gesondert für die folgenden Gebiete berechnet: Zentrales Polarmeer, Kara-Laptev-See, Beaufort-See sowie für Bänder von 5° Breite im Gebiet Nordmeer-Barentssee.Die Resultate für die einzelnen Gebiete werden an Hand von Diagrammen und Tabellen diskutiert. Über Eis zeigt die Verdunstung ein doppeltes Maximum im Frühling und Herbst und das Hauptminimum im Winter, während sich über offenem Wasser ein Sommerminimum und ein breites Wintermaximum ergeben. Es zeigt sich, daß bereits relativ kleine Wasserflächen, die länger im Herbst oder während des ganzen Winters offen bleiben, im Polarmeer zu sehr hohen Wärmeverlusten führen.Der Wärmefluß wird oft auf Grund der Verdunstung mit Hilfe derBowen-Formel berechnet. Wegen der geringen Verdunstung über dem Polarmeer führt diese Formel jedoch zu unrichtigen Werten, und es wird deshalb hier dieShuleikin-Formel benützt, die eine Bestimmung des Wärmeflusses unabhängig von der Verdunstung ermöglicht; die charakteristischen Kurven des Wärmeflusses sind den Verdunstungskurven sehr ähnlich. Offenes Wasser im Polarmeer führt auch hier zu sehr hohen Werten; eine offene Wasserfläche von 1% in der Zeit von Oktober bis Mai würde den Wärmefluß vom zentralen Polarmeer von 3,7 auf 5,2 Kcal/cm2 pro Jahr erhöhen. Offene Flächen müssen daher klein bleiben, da der Energievorrat nicht genügend groß für die Aufrechterhaltung eines solchen Energieflusses wäre. Zum Schlusse werden in einer Tabelle Monatswerte der gesamten Wärmeverluste durch Verdunstung und Wärmefluß für die verschiedenen Gebiete gegeben.

Résumé On a calculé des valeurs mensuelles de l'évaporation et du flux de chaleur pour l'Océan Glacial Arctique et pour la région située entre la Mer du Groenland et la Mer de Barents. Dans le cas de l'évaporation, on s'est servi de la formule deSverdrup dont on a déterminé à nouveau le coefficient K en tenant compte de sa dépendance du vent. Il a été possible de tenir compte du vent dans les régions arctiques grâce à l'établissement récent de cartes saisonnières de la vitesse moyenne du vent. En raison de l'incertitude des déterminations antérieures de la température de surface, on a procédé à des calculs supplémentaires pour des cas extrêmes en été et en hiver afin d'évaluer les sources d'erreurs possibles. On a calculé séparément l'évaporation et le flux de chaleur pour les régions suivantes: Centre de l'Océan Glacial Arctique, Mer de Kara-Mer de Laptev, Mer de Beaufort ainsi que pour de bandes de 5° de largeur dans la région comprise entre la Mer du Groenland et la Mer de Barents.On discute les résultats obtenus pour ces différentes zones en partant de diagrammes et de tableaux. Au-dessus de la glace, l'évaporation présente deux maximums, l'un au printemps, l'autre en automme et un minimum principal en hiver. Sur la mer libre, on constate au contraire un minimum en été et un maximum très large en hiver. Il en résulte que des surfaces libres de glace relativement peu étendues qui se maintiennent en automne, voire durant tout l'hiver peuvent déjà provoquer des pertes de chaleur considérables dans l'Océan Glacial Arctique.On calcule souvent le flux de chaleur en se basant sur l'évaporation selon la formule deBowen. Cependant, en raison des faibles évaporations constatées sur l'Océan Glacial, cette formule conduirait à des valeurs fausses. On a donc utilisé ici la formule deShuleikin qui permet la détermination du flux de chaleur indépendamment de l'évaporation. Les courbes caractéristiques du flux de chaleur sont très semblables à celles de l'évaporation. Les surfaces libres de glace de l'Océan Glacial conduisent ici aussi à des valeurs très élevées. Une surface d'eau de 1% restant libre de glace d'octobre à mai augmenterait de flux de chaleur de l'océan de 3,7 à 5,2 Kcal/cm2 par année. Les surfaces d'eau doivent donc rester très petites, car les réserves d'énergie sont insuffisantes pour maintenir un tel flux d'énergie calorifique. On donne enfin dans une table les pertes mensuelles totales de chaleur dues à l'évaporation et au flux de chaleur et cela pour chacune des régions considérées.


With 6 Figures

The research reported in this paper was sponsored in part by the Air Force Cambridge Research Laboratories, Office of Aerospace Research, under Contract AF 19(604)7415.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号