首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   590篇
  免费   16篇
  国内免费   2篇
测绘学   21篇
大气科学   68篇
地球物理   159篇
地质学   179篇
海洋学   57篇
天文学   52篇
自然地理   72篇
  2020年   6篇
  2019年   5篇
  2018年   7篇
  2017年   10篇
  2016年   10篇
  2015年   14篇
  2014年   12篇
  2013年   35篇
  2012年   19篇
  2011年   27篇
  2010年   20篇
  2009年   30篇
  2008年   25篇
  2007年   22篇
  2006年   29篇
  2005年   17篇
  2004年   20篇
  2003年   18篇
  2002年   14篇
  2001年   10篇
  2000年   15篇
  1999年   9篇
  1998年   14篇
  1997年   6篇
  1996年   8篇
  1995年   6篇
  1994年   10篇
  1993年   10篇
  1992年   5篇
  1991年   7篇
  1990年   7篇
  1989年   9篇
  1988年   10篇
  1987年   10篇
  1986年   5篇
  1985年   5篇
  1984年   8篇
  1983年   12篇
  1982年   13篇
  1981年   18篇
  1980年   7篇
  1979年   8篇
  1978年   11篇
  1977年   5篇
  1976年   3篇
  1975年   6篇
  1972年   7篇
  1971年   3篇
  1969年   3篇
  1958年   2篇
排序方式: 共有608条查询结果,搜索用时 15 毫秒
581.
Transport of nonsorbing solutes in a streambed with periodic bedforms   总被引:1,自引:0,他引:1  
Previous studies of hyporheic zone focused largely on the net mass transfer of solutes between stream and streambed. Solute transport within the bed has attracted less attention. In this study, we combined flume experiments and numerical simulations to examine solute transport processes in a streambed with periodic bedforms. Solute originating from the stream was subjected to advective transport driven by pore water circulation due to current–bedform interactions as well as hydrodynamic dispersion in the porous bed. The experimental and numerical results showed that advection played a dominant role at the early stage of solute transport, which took place in the hyporheic zone. Downward solute transfer to the deep ambient flow zone was controlled by transverse dispersion at the later stage when the elapsed time exceeded the advective transport characteristic time tc (= L/uc with L being the bedform length and uc the characteristic pore water velocity). The advection-based pumping exchange model was found to predict reasonably well solute transfer between the overlying water and streambed at the early stage but its performance deteriorated at the later stage. With dispersion neglected, the pumping exchange model underestimated the long-term rate and total mass of solute transfer from the overlying water to the bed. Therefore both advective and dispersive transport components are essential for quantification of hyporheic exchange processes.  相似文献   
582.
The deleterious character of highway runoff, especially following long periods without precipitation, has been well documented in the literature. It transports hydrocarbons, heavy metals, and other contaminants from highways, contributing to the pollution of surface water and groundwater. Groundwater is particularly vulnerable in karst areas where highway runoff is transferred quickly into subsurface conduit networks through open sinkholes and/or sinking streams. The difficulties in remediating contaminated karst aquifers make it crucial for karst aquifers to receive only uncontaminated water. A peat filtration system was constructed at the I-40/I-640 interchange in eastern Knoxville, Tennessee, USA, to remove highway runoff contaminants prior to being transported into karst aquifers. Recent field tests indicate that the system can significantly decrease the concentrations of analyzed constituents including PAHs (polyaromatic hydrocarbons), copper, and zinc. However, the removal efficiency depends on the concentration of the contaminants in the runoff. Long-term monitoring is required to determine the true effectiveness of the designed filtration system and its reliability.  相似文献   
583.
Sunspots block the flow of energy to the solar surface. The blocked energy heats the volume beneath the spot, producing a pressure excess which drives an outflow of mass. Linear numerical models of the mass and energy flow around spots were constructed to estimate the predictions of this physical picture against the observed properties of sunspot bright rings and moat flows. The width of the bright ring and moat are predicted to be proportional to the depth of the spot penumbra, in conflict with the observed proportionally of the moat width to the spot diameter. Postulating that spot depths are proportional to spot diameters would bury the moat flow too deeply to be observed, because the radial velocity at the surface is found to be inversely proportional to the depth of the spot penumbra. The radial velocity at the surface is of order a few hundred meters per second after 1 day, in agreement with the observed excess of moat velocities over supergranule velocities.  相似文献   
584.
Analysis of a 3.5 m vibracore from the Olson buried forest bed in the southern Lake Michigan basin provides new paleolimnological data for the early Holocene. The core records a rise in lake level from the Chippewa low water phase toward the Nipissing high water phase. Deepening of the water level at the core site is suggested by a trend toward decreasing organic carbon content up core that is interpreted as a response to increasing distance between terrestrial debris sources and the core site.Published data from deep water cores from the southern Lake Michigan basin suggest there had been an inflow of isotopically light water from glacial Lake Agassiz into the southern basin between 10.5-11 ka (A1 event). The data also indicate a second flood of isotopically light water between 8-9 ka (A2 event).Three new 14C dates from the Olson site core suggest that most of the sediment was deposited between 8.45 ka and 8.2 ka, an interval roughly coeval with the second pulse of 18O-depleted water (A2) from Lake Agassiz into the southern basin. Oxygen isotope ratio analysis of shell aragonite from the gastropods Probythinella lacustris and Marstonia deceptashows increasingly negative values up core. This trend in18O values suggests that 18O - depleted water entered the southern basin about 8.4 ka. The Olson site core thus provides a chronology of events in the southern Lake Michigan basin associated with the draining of glacial Lake Agassiz.  相似文献   
585.
586.
587.
The composition and amount of colloidal and suspended participate matter transported during a small flood event in Magela Creek in tropical northern Australia was investigated. The flood studied constituted approximately 3 % of the total annual flow, most (90%) of which occurred between mid-January and mid-February of the study year. Three fractions were separated from water samples using a sequential method involving a continuous flow centrifuge to separate suspended particulate matter (SPM; nominally > 1 μm) followed by hollow fibre filtration, first using a 0.1 μm filter to separate course colloidal matter (CCM; nominal size 1–0.1 μm) and then a 0–015 μm filter to separate fine colloidal matter (FCM; nominal size 0.1–0.015 μm). The SPM was predominantly inorganic (organic matter 21 %), whereas the colloidal fractions were dominantly organic matter (CCM 60%; FCM 83%). Analysis of individual particles using electron microprobe and automated image analysis indicated that the mineral fractions in both the SPM and CCM were dominated by iron-enriched aluminosilicates (including kaolinite) (72–82%) and quartz (9–10%), indicative of a highly weathered and extensively laterized catchment. Surprisingly there was very little difference in the composition of the SPM or CCM fractions during the flood event studied, which may indicate either that sediment availability was restricted following the major run-off events in January and February, or that all the sediment sources within the catchment are geochemically similar. Approximately the same amounts of particulate (20 tonne), colloidal (21 tonne) and dissolved material (17 tonne) were transported during the 25 hour period of the main flood peak; over 90% of the colloidal matter was 0.1–1.0 μm in size. These data suggest that previous estimates of the amounts of particulate (and colloidal) matter transported by Magela Creek, which were based on suspended solids measurements, may have underestimated the particulate matter load by as much as 50%. It is possible that the relatively high proportion of colloidal matter is unique to Magela Creek because coagulation and aggregation of colloidal matter to particulate matter is slow due to the very low concentations of calcium and magnesium in these waters. However, if the result is more widespread, there are important implications for the global estimates of fluvially transported particulate and dissolved materials as many of the previous studies may have underestimated the particulate load and overestimated the dissolved load.  相似文献   
588.
589.
Identification of hydrogeologic controls on groundwater flowpaths, recharge, and salinization is often critical to the management of limited arid groundwater resources. One approach to identifying these mechanisms is a combined analysis of hydrogeologic and hydrochemical data to develop a comprehensive conceptual model of a groundwater basin. To demonstrate this technique, water samples were collected from 33 discrete vertical zone test holes in the Hueco Bolson aquifer, located within the Trans-Pecos Texas region and the primary water resource for El Paso, Texas, USA and Juárez, Mexico. These samples were analyzed for a suite of geochemical tracers and the data evaluated in light of basin hydrogeology. On the basis of δ2H and δ18O data, two regional recharge sources were recognized, one originating from western mountain-fronts and one from through-flow of the adjacent Tularosa aquifer. Chloride concentrations were strongly correlated with lithologic formations and both Cl/Br and 36Cl ratios suggested the primary chloride source is halite dissolution within a specific lithologic unit. In contrast, sulfur isotopes indicated that most sulfate originates from Tularosa basin Permian gypsum sources. These results yielded a more comprehensive conceptual model of the basin, which suggested that chloride salinization of wells is the result of upconing of waters from the Fort Hancock formation.  相似文献   
590.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号