首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   699篇
  免费   23篇
  国内免费   5篇
测绘学   17篇
大气科学   58篇
地球物理   165篇
地质学   266篇
海洋学   75篇
天文学   63篇
综合类   2篇
自然地理   81篇
  2023年   3篇
  2020年   13篇
  2019年   10篇
  2018年   22篇
  2017年   17篇
  2016年   23篇
  2015年   19篇
  2014年   19篇
  2013年   28篇
  2012年   23篇
  2011年   34篇
  2010年   38篇
  2009年   51篇
  2008年   43篇
  2007年   37篇
  2006年   22篇
  2005年   35篇
  2004年   26篇
  2003年   26篇
  2002年   21篇
  2001年   15篇
  2000年   8篇
  1999年   9篇
  1998年   21篇
  1997年   7篇
  1996年   9篇
  1995年   10篇
  1994年   8篇
  1993年   2篇
  1992年   8篇
  1991年   6篇
  1990年   7篇
  1989年   4篇
  1988年   4篇
  1987年   7篇
  1986年   8篇
  1985年   7篇
  1984年   18篇
  1983年   7篇
  1982年   7篇
  1981年   6篇
  1980年   4篇
  1979年   7篇
  1978年   4篇
  1977年   3篇
  1976年   3篇
  1975年   3篇
  1974年   2篇
  1973年   3篇
  1971年   2篇
排序方式: 共有727条查询结果,搜索用时 703 毫秒
21.
Coastal waters are severely threatened by nitrogen (N) loading from direct groundwater discharge. The subterranean estuary, the mixing zone of fresh groundwater and sea water in a coastal aquifer, has a high potential to remove substantial N. A network of piezometers was used to characterize the denitrification capacity and groundwater flow paths in the subterranean estuary below a Rhode Island fringing salt marsh.15N-enriched nitrate was injected into the subterranean estuary (in situ push-pull method) to evaluate the denitrification capacity of the saturated zone at multiple depths (125–300 cm) below different zones (upland-marsh transition zone, high marsh, and low marsh). From the upland to low marsh, the water table became shallower, groundwater dissolved oxygen decreased, and groundwater pH, soil organic carbon, and total root biomass increased. As groundwater approached the high and low marsh, the hydraulic gradient increased and deep groundwater upwelled. In the warm season (groundwater temperature >12 °C), elevated groundwater denitrification capacity within each zone was observed. The warm season low marsh groundwater denitrification capacity was significantly higher than all other zones and depths. In the cool season (groundwater temperature <10.5 °C), elevated groundwater denitrification capacity was only found in the low marsh. Additions of dissolved organic carbon did not alter groundwater denitrification capacity suggesting that an alternative electron donor, possibly transported by tidal inundation from the root zone, may be limiting. Combining flow paths with denitrification capacity and saturated porewater residence time, we estimated that as much as 29–60 mg N could be removed from 11 of water flowing through the subterranean estuary below the low marsh, arguing for the significance of subterranean estuaries in annual watershed scale N budgets.  相似文献   
22.
23.
Following Early Cretaceous nappe stacking, the Eastern Alps were affected by late-orogenic extension during the Late Cretaceous. In the eastern segment of this range, a Late Cretaceous detachment separates a very low- to low-grade metamorphic cover (Graz Paleozoic Nappe Complex, GPNC) above a low- to high-grade metamorphic basement. Synchronously, the Kainach Gosau Basin (KGB) collapsed and subsided on top of the section.Metamorphism of organic material within this section has been investigated using vitrinite reflectance data and Raman spectra of extracted carbonaceous material. In the southern part of the GPNC, vitrinite reflectance indicates a decrease in organic maturity towards the stratigraphic youngest unit. The remaining part of the GPNC is characterized by an aureole of elevated vitrinite reflectance values and Raman R2 ratios that parallels the margins of the GPNC. Vitrinite reflectance in the KGB shows a steep coalification gradient and increases significantly towards the western basin margin. The observed stratigraphic trend in the southern GPNC is a result of deep Paleozoic to Early Cretaceous burial. This maturity pattern was overprinted along the margins by advective heat and convective fluids during Late Cretaceous to Paleogene exhumation of basement rocks.During shearing, the fault zone was heated up to ca. 500 °C. This overprint is explained by a two-dimensional thermal model with a ramp-flat fault geometry and a slip rate of 1 to 1.5 cm/year during 5 Ma fault movement. The collapse basin above the detachment subsided in a thermal regime which was characterized by relaxing isotherms.  相似文献   
24.
The Arsenopyrite Residue Stockpile (ARS) in Snow Lake, Manitoba contains approximately 250,000 tons of cyanide treated, refractory arsenopyrite ore concentrate. The residue was deposited between 1950 and 1959 in an open waste rock impoundment, and remained exposed until 2000, when the pile was capped with layers of waste rock and clay. During the time when the ARS was exposed to the atmosphere, arsenopyrite, pyrrhotite, pyrite and chalcopyrite were oxidized producing scorodite, jarosite and two generations of amorphous Fe sulfo-arsenates (AISA). These secondary phases attenuated some of the As released to pore water during oxidation in the upper layers of the ARS. The imposition of the cap prevented further oxidation. The secondary As minerals are not stable in the reduced environment that currently dominates the pile. Therefore, As currently is being released into the groundwater. Water in an adjacent monitoring well has concentrations of >20 mg/L total As with relative predominance of As(III).  相似文献   
25.
Obsidian is abundant in the Main Ethiopian Rift (MER). Petrological and geochemical features of obsidian from four volcanic centers in the MER, namely Birenti, Dofen, Fentale and Kone, are presented. Compositional and petrological variability is noted among the Dofen and Fentale obsidian, but not in those from Kone and Birenti where each have separate but uniform elemental composition. The Fentale and Kone obsidian were source materials for the artifacts of a number of Middle Stone Age and Later Stone Age/Neolithic sites in the region. We have yet to determine whether Dofen and Birenti were sources for archeological artifacts. The study also shows that volcanic episodes from a single center do not necessarily result in compositional variability.  相似文献   
26.
The management of groundwater resources is very important in the semiarid Sahel region, which is experiencing rapid urban development. Impacts of urbanization on groundwater resources were investigated in the unconfined aquifer of the Continental Terminal beneath the city of Niamey, Niger, using water level and chemical data. Hydrodynamic and chemical changes are best described by a combination of factors including the historical development of the city, current land use, water-table depth and topography. Seasonal groundwater recharge occurs with high spatial variability, as indicated by water-level monitoring in all wells, but there was no interannual trend over the 5-year study period. Groundwater salinity shows high spatial variability and a minor rising trend. The highest salinity is in the old city centre, with Na–NO3 dominant, and it increases seasonally with recharge. Salinity is much lower and more variable in the suburbs (Ca–HCO3, Ca–NO3, and Na–NO3 dominant). Nitrate is the main ionic contaminant and is seasonally or permanently above the international guidelines for drinking water quality in 36 % of sampled wells, with a peak value of 112 mg L?1 NO3–N (8 meq L?1). Comparison of urban and rural sites indicates a long-term increase in groundwater recharge and nitrate enrichment in the urban area with serious implications for groundwater management in the region.  相似文献   
27.
28.
29.
30.
Estuaries are productive and ecologically important ecosystems, incorporating environmental drivers from watersheds, rivers, and the coastal ocean. Climate change has potential to modify the physical properties of estuaries, with impacts on resident organisms. However, projections from general circulation models (GCMs) are generally too coarse to resolve important estuarine processes. Here, we statistically downscaled near-surface air temperature and precipitation projections to the scale of the Chesapeake Bay watershed and estuary. These variables were linked to Susquehanna River streamflow using a water balance model and finally to spatially resolved Chesapeake Bay surface temperature and salinity using statistical model trees. The low computational cost of this approach allowed rapid assessment of projected changes from four GCMs spanning a range of potential futures under a high CO2 emission scenario, for four different downscaling methods. Choice of GCM contributed strongly to the spread in projections, but choice of downscaling method was also influential in the warmest models. Models projected a ~2–5.5 °C increase in surface water temperatures in the Chesapeake Bay by the end of the century. Projections of salinity were more uncertain and spatially complex. Models showing increases in winter-spring streamflow generated freshening in the Upper Bay and tributaries, while models with decreased streamflow produced salinity increases. Changes to the Chesapeake Bay environment have implications for fish and invertebrate habitats, as well as migration, spawning phenology, recruitment, and occurrence of pathogens. Our results underline a potentially expanded role of statistical downscaling to complement dynamical approaches in assessing climate change impacts in dynamically challenging estuaries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号