首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85466篇
  免费   1139篇
  国内免费   526篇
测绘学   1755篇
大气科学   5611篇
地球物理   16255篇
地质学   30786篇
海洋学   7867篇
天文学   19906篇
综合类   222篇
自然地理   4729篇
  2022年   620篇
  2021年   1048篇
  2020年   1115篇
  2019年   1247篇
  2018年   2550篇
  2017年   2361篇
  2016年   2718篇
  2015年   1356篇
  2014年   2618篇
  2013年   4486篇
  2012年   2861篇
  2011年   3692篇
  2010年   3372篇
  2009年   4264篇
  2008年   3717篇
  2007年   3830篇
  2006年   3550篇
  2005年   2522篇
  2004年   2445篇
  2003年   2282篇
  2002年   2272篇
  2001年   1969篇
  2000年   1954篇
  1999年   1535篇
  1998年   1595篇
  1997年   1465篇
  1996年   1243篇
  1995年   1242篇
  1994年   1042篇
  1993年   1007篇
  1992年   934篇
  1991年   967篇
  1990年   935篇
  1989年   817篇
  1988年   751篇
  1987年   883篇
  1986年   773篇
  1985年   946篇
  1984年   1070篇
  1983年   1031篇
  1982年   950篇
  1981年   891篇
  1980年   792篇
  1979年   748篇
  1978年   726篇
  1977年   618篇
  1976年   626篇
  1975年   613篇
  1974年   589篇
  1973年   656篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
The President of the Photogrammetric Society, Mr. I Newton, chaired a panel discussion concerned with those developments in photogrammetry which may take place during the 1990s.  相似文献   
992.
An examination of the need for map revision and the methods currently used allows the identification of problems specific to this operation. It is suggested that many instruments, old and new, suitable for new map production do not solve the problems associated with map revision. The main characteristics of instruments designed for map revision in the future are outlined, with the suggestion that the time has now come for instruments to be designed specifically for the map revision task, rather than practitioners having to devise revision procedures to suit existing equipment.  相似文献   
993.
A technique is proposed for Earths gravity field modeling on the basis of satellite accelerations that are derived from precise orbit data. The functional model rests on Newtons second law. The computational procedure is based on the pre-conditioned conjugate-gradient (PCCG) method. The data are treated as weighted average accelerations rather than as point-wise ones. As a result, a simple three-point numerical differentiation scheme can be used to derive them. Noise in the orbit-derived accelerations is strongly dependent on frequency. Therefore, the key element of the proposed technique is frequency-dependent data weighting. Fast convergence of the PCCG procedure is ensured by a block-diagonal pre-conditioner (approximation of the normal matrix), which is derived under the so-called Colombo assumptions. Both uninterrupted data sets and data with gaps can be handled. The developed technique is compared with other approaches: (1) the energy balance approach (based on the energy conservation law) and (2) the traditional approach (based on the integration of variational equations). Theoretical considerations, supported by a numerical study, show that the proposed technique is more accurate than the energy balance approach and leads to approximately the same results as the traditional one. The former finding is explained by the fact that the energy balance approach is only sensitive to the along-track force component. Information about the cross-track and the radial component of the gravitational potential gradient is lost because the corresponding force components do no work and do not contribute to the energy balance. Furthermore, it is shown that the proposed technique is much (possibly, orders of magnitude) faster than the traditional one because it does not require the computation of the normal matrix. Hints are given on how the proposed technique can be adapted to the explicit assembling of the normal matrix if the latter is needed for the computation of the model covariance matrix.Acknowledgments. Professor R. Klees is thanked for support of the project and for numerous fruitful discussions. The authors are also thankful to Dr. J. Kusche for useful remarks and to Dr. E. Schrama, his solid background in satellite geodesy proved to be very helpful. A large number of valuable comments were made by Dr. S.-C. Han, Dr. P. Schwintzer, and an anonymous reviewer; their contribution is greatly acknowledged. The satellite orbits used in the numerical study were kindly provided by Dr. P. Visser (Aerospace Department, Delft University of Technology). Access to the SGI Origin 3800 computer was provided by Stichting Nationale Computerfaciliteiten (NCF), grant SG-027.  相似文献   
994.
Commonly, the variance-covariance (VCV) matrix derived from GPS processing software underestimates the magnitude of the error, mainly due to the fact that physical correlations are normally neglected. The GAMIT and Bernese software packages serve the scientific community as important tools for GPS measurement processing and analyzing, especially in precise applications. Therefore, the reliability of the VCV matrices derived by the GAMIT and Bernese packages is of great importance. Formal accuracies derived from both software need to be scaled by applying a scaling factor (SF) that multiplies the software-derived formal errors. However, to the best of our knowledge, no standard approach approved by the GPS community exists. In this report, an analysis is carried out in order to test the reliability and the validity of the VCV matrices in both software, and to provide SFs needed to calculate the realistic accuracies reflecting the actual error levels. The method applied in this study allows deriving SFs for formal accuracies obtained from GAMIT and Bernese. The results attained from the time series of eight days for eight baselines (lengths of 20–415 km) indicate that the overall SF for GAMIT is more than 10 times smaller than for Bernese (1.9 and 23.0, respectively). Although no distance-dependent SF was detected in either case, the session-duration dependence was detected for the Bernese software, while no clear session-duration dependence was observed for the GAMIT. Furthermore, no receiver/antenna dependence could be deduced from the results of this analysis.  相似文献   
995.
Wet tropospheric effects on precise relative GPS height determination   总被引:6,自引:0,他引:6  
Summary Considerable interest has been generated recently in the use of the Global Positioning System (GPS) for precise height determination. A major error source in these measurements is the propagation delay due to atmospheric water vapour. In order to achieve the high precisions required for such applications as absolute sea-level monitoring improvement of wet delay modelling is necessary. Results from a GPS campaign show a significant correlation (0.91) between the variability of the wet delay measured using a water vapour radiometer (WVR) at the Onsala site and the absolute value of the residual error in the height determination of a 134 km baseline from Onsala to Jönköping. This correlation indicates that the atmosphericvariability as inferred from the WVR data includes information on the quality of the GPS height estimate. During periods of high atmospheric activity, e.g., during the passage of a weather front, the use of a six-parameter gradient model reduces the spread for the vertical coordinate from 40 mm to 20 mm (with standard deviations of 17 mm and 9 mm respectively) over the 134 km baseline (less than 1 × 10–7) using 8 hour data spans on 11 different days over a six month period.  相似文献   
996.
Summary Given a sample autocovariance sequence of finite length for some observed random process, the spectrum estimation problem involves the extension of this sequence for the required Fourier transformation. The maximum entropy approach which is based on the optimal use of information contents, leads to a dual sequence of reflection coefficients with reciprocal spectrum of the process. The estimation of the maximum entropy spectrum implies results identical to those using autoregressive modeling in one dimension under appropriate white noise assumptions. In cases of a non-white noise component, the approach is generalized to an autoregressive-moving-average model. Recent developments in multiresolution analysis with spectral domain decompositions also offer possibilities of subband spectrum estimation for specific applications. Using a simulated data sequence with two close frequencies, the estimated spectrum from a two-level decomposition with autoregressive modeling shows better resolution than with conventional processing. Geodetic and geophysical applications are briefly indicated.  相似文献   
997.
About half a million marine gravity measurements over a 30×30 area centered on Japan have been processed and adjusted to produce a new free-air gravity map from a 5′×5′ grid. This map seems to have a better resolution than those previously published as measured by its correlation with bathymetry. The grid was used together with a high-degree and -order spherical harmonics geopotential model to compute a detailed geoid with two methods: Stokes integral and collocation. Comparisons with other available geoidal surfaces derived either from gravity or from satellite altimetry were made especially to test the ability of this new geoid at showing the sea surface topography as mapped by the Topex/Poseidon satellite. Over 2 months (6 cycles) the dynamic topography at ascending passes in the region (2347N and 123147E) was mapped to study the variability of the Kuroshio current. Received: 15 July 1994 / Accepted: 17 February 1997  相似文献   
998.
Monitoring the crop acreage and irrigation water requirements vis-a-vis irrigation water supplies is important to obtain a realistic view of the “irrigation potential” and “potential utilised”. Satellite data provides information on crop area and thereby net irrigation water requirements of crops. A pilot study was taken up in Mahendragarh distributary canal in Haryana State to estimate net irrigation water requirement of crops under 17 minors for kharif and rabi seasons of 1992–93 period using IRS-1B satellite geocoded FCC images. These water requirements, when analysed with canal and tubewell water supplies for crops, show largescale deficiencies in the irrigation command area.  相似文献   
999.
We show that the amplitude of the Global Positioning System (GPS) signals in the radio occultation (RO) experiments is an indicator of the activity of the gravity waves (GW) in the atmosphere. The amplitude of the GPS RO signals is more sensitive to the atmospheric wave structures than is the phase. Early investigations used only the phase of the GPS occultation signals for statistical investigation of the GW activity in the height interval 10–40 km on a global scale. In this study, we use the polarization equations and Hilbert transform to find the 1-D GW radio image in the atmosphere by analyzing the amplitude of the RO signal. The radio image, also called the GW portrait, consists of the phase and amplitude of the GW as functions of height. We demonstrate the potential of this method using the amplitude data from GPS/Meteorology (GPS/MET) and satellite mission Challenge Mini-satellite Payload (CHAMP) RO events. The GW activity is nonuniformly distributed with the main contribution associated with the tropopause and the secondary maximums related to the GW breaking regions. Using our method we find the vertical profiles of the horizontal wind perturbations and its vertical gradient associated with the GW influence. The estimated values of the horizontal wind perturbations are in fairly good agreement with radiosonde data. The horizontal wind perturbations v(h) are ±1 to ±5 m s with vertical gradients dv/dh ±0.5 to ±15 m s km at height 10–40 km. The height dependence of the GW vertical wavelength was inferred through the differentiation of the GW phase. Analysis of this dependence using the dispersion relationship for the GW gives the estimation of the projection of the horizontal background wind velocity on the direction of the GW propagation. For the event considered, the magnitude of this projection changes between 1.5 and 10 m s at heights of 10–40 km. We conclude that the amplitude of the GPS occultation signals contain important information about the wave processes in the atmosphere on a global scale.  相似文献   
1000.
Global precipitation is monitored from a variety of platforms including spaceborne, ground-, and ocean-based platforms. Intercomparisons of these observations are crucial to validating the measurements and providing confidence for each measurement technique. Probability distribution functions of rain rates are used to compare satellite and ground-based radar observations. A preferred adjustment technique for improving rain rate distribution estimates is identified using measurements from ground-based radar and rain gauges within the coverage area of the radar. The underwater measurement of rainfall shows similarities to radar measurements, but with intermediate spatial resolution and high temporal resolution. Reconciling these different measurement techniques provides understanding and confidence for all of the methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号