首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   177篇
  免费   15篇
  国内免费   1篇
测绘学   3篇
大气科学   19篇
地球物理   56篇
地质学   88篇
海洋学   8篇
天文学   11篇
综合类   1篇
自然地理   7篇
  2024年   1篇
  2023年   2篇
  2022年   5篇
  2021年   7篇
  2020年   13篇
  2019年   11篇
  2018年   10篇
  2017年   14篇
  2016年   35篇
  2015年   11篇
  2014年   14篇
  2013年   11篇
  2012年   13篇
  2011年   9篇
  2010年   6篇
  2009年   10篇
  2008年   6篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  1998年   1篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
  1984年   1篇
排序方式: 共有193条查询结果,搜索用时 31 毫秒
141.
142.
143.
144.
145.
3-D dynamic foundation-soil-foundation interaction on layered soil   总被引:1,自引:0,他引:1  
In this work the interaction between adjacent rigid, surface foundations resting on a viscoelastic layered soil medium is studied. A 3-D frequency domain BEM formulation in conjunction with infinite space fundamental solutions and the so called `successive stiffness method', initially developed for elastostatics and adapted here for the solution of elastodynamic problems, are used for the simulation of a layered soil medium. As a result, a discretization of the soil-foundation interface and the surrounding free surface as well as the soil layers' interfaces is necessary. However, it is shown in this work that reasonably accurate results can be obtained by using a substantially reduced discretization scheme involving only a small portion of the free surface surrounding the foundation and the corresponding interfaces of the soil layers. The presented numerical results demonstrate the importance of the dynamic foundation-soil-foundation interaction phenomenon which becomes even more pronounced where the supporting soil medium is made up of relatively shallow layers close to its free surface.  相似文献   
146.
Arctic warming and permafrost thaw visibly expose changes in the landscape of the Lena River delta, the largest Arctic delta. Determining the past and modern river regime of thick deltaic deposits shaping the Lena River mouth in north-eastern Siberia is critical for understanding the history of delta formation and carbon sequestration. Using a 65 m long sediment core from the delta apex a set of sedimentological techniques is applied to aid in reconstructing the Lena River history. The analysis includes: (i) grain-size measurements and the determination of the bedload composition; (ii) X-ray fluorescence, X-ray diffractometry, and magnetic susceptibility measurements and heavy mineral analysis for tracking mineral change; (iii) pH, electrical conductivity, ionic concentrations, and the δ18O and δD stable isotope composition from ground ice for reconstructing permafrost formation. In addition; (iv) total and dissolved organic carbon is assessed. Chronology is based on; (vi) radiocarbon dating of organic material (accelerator mass spectrometry and conventional) and is complemented by two infrared – optically stimulated luminescence dates. The record stretches back approximately to Marine Isotope Stage 7. It holds periods from traction, over saltation, to suspension load sedimentation. Minerogenic signals do not indicate provenance change over time. They rather reflect the change from high energy to a lower energy regime after Last Glacial Maximum time parallel to the fining-up grain-size trend. A prominent minimum in the ground ice stable isotope record at early Holocene highlights that a river arm migration and an associated refreeze of the underlying river talik has altered the isotopic composition at that time. Fluvial re-routing might be explained by internal dynamics in the Lena River lowland or due to a tectonic movement, since the study area is placed in a zone of seismic activity. At the southern Laptev Sea margin, onshore continental compressional patterns are bordering offshore extensional normal faults.  相似文献   
147.
This paper investigates the damage assessment of a three‐story half‐scale precast concrete building resembling a parking garage through structural identification. The structure was tested under earthquake‐type loading on the NEES large high‐performance outdoor shake table at the University of California San Diego in 2008. The tests provide a unique opportunity to capture the dynamic performance of precast concrete structures built under realistic boundary conditions. The effective modal parameters of the structure at different damage states have been identified from white‐noise and scaled earthquake test data with the assumption that the structure responded in a quasi‐linear manner. Modal identification has been performed using the deterministic‐stochastic subspace identification method based on the measured input–output data. The changes in the identified modal parameters are correlated to the observed damage. In general, the natural frequencies decrease, and the damping ratios increase as the structure is exposed to larger base excitations, indicating loss of stiffness, development/propagation of cracks, and failure in joint connections. The analysis of the modal rotations and curvatures allowed the localization of shear and flexural damages respectively and the checking of the effectiveness of repair actions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
148.
Significant attention has been given to hyporheic water fluxes induced by hydromorphologic processes in streambeds and the effects they have on stream ecology. However, the impact of hyporheic fluxes on regional groundwater flow discharge zones as well as the interaction of these flows are much less investigated. The groundwater-hyporheic interactive flow not only governs solute mass and heat transport in streams but also controls the retention of solute and contamination following the discharge of deep groundwater, such as naturally occurring solutes and leakage from geological waste disposal facilities. Here, we applied a physically based modeling approach combined with extensive hydrologic, geologic and geographical data to investigate the effect of hyporheic flow on groundwater discharge in the Krycklan catchment, located in a boreal landscape in Sweden. Regional groundwater modeling was conducted using COMSOL Multiphysics by considering geologic heterogeneity and infiltration constraint of the groundwater circulation intensity. Moreover, the hyporheic flow was analyzed using an exact spectral solution accounting for the fluctuating streambed topography and superimposed with the regional groundwater flow. By comparing the discharge flow fields with and without consideration of hyporheic flows, we found that the divergence of the discharge was substantially enhanced and the distribution of the travel times of groundwater was significantly shifted toward shorter times due to the presence of hyporheic flow. Particularly important is that the groundwater flow paths contract near the streambed interface due to the hyporheic flow, which leads to a phenomenon that we name “fragmentation” of coherent areas of groundwater upwelling in pinhole-shaped stream tubes.  相似文献   
149.
Geomagnetic records from 20 Japanese observatories have been used to yield time series of response function (RF) components for 20 years at periods of between 2.5 and 60 min. Six observatories showed anomalous variations lasting 3–5 years in the short period part of the above range of periods prior to the March 11, 2011 Tohoku earthquake. The variations could have been intermediate-term precursors. We made a detailed analysis of how noise affects the results using coherence criteria, visual control, and the remote-reference technique. We clarified the conditions that make response functions dependent on geomagnetic activity. For 19 observatories we constructed the tensor of the anomalous magnetic field with Kakioka as the base site. An anomaly in electrical conductivity striking WNW–ESE has been identified beneath the Boso Peninsula near Tokyo in the conditions of strong noise. We sought to corroborate the reality of the anomaly by visual control and processing of nighttime records with minimum noise. We advanced idea that precursors can be monitored using the DC noise field in the presence of a shallow conductivity anomaly. We provided a tectonic interpretation of the obtained RF anomalies. The Boso conductivity anomaly is interpreted as being due to a graben-shaped structure of the sediments and possibly to a deeper plate-tectonics structure, that is, the Sagami Trough. We examine similarities and differences between the Boso anomaly and the Avacha anomaly in Kamchatka, and provided recommendations for further study of the Boso anomaly and for using the Avacha anomaly to monitor EM precursors in Kamchatka.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号