首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   5篇
大气科学   9篇
地球物理   9篇
地质学   5篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2008年   1篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
21.
The Nobeoka Thrust of Southwest Japan is an on‐land example of an ancient megasplay fault that provides an excellent record of deformation and fluid flow at seismogenic depths. The present study reports: (i) temporal stress changes for the seismogenic period of the Nobeoka Thrust; and (ii) spatial heterogeneities in driving pressure ratios P* obtained from mineral veins around the Nobeoka Thrust fault zone. Many quartz veins that filled mode I cracks can be observed in the hanging wall and footwall of the thrust. Inversion for stress orientation suggests that normal faulting dominated in both the hanging wall and footwall, with similar stress axis orientations in both. The orientation of σ3 for the estimated stress regime is parallel to the slip direction of the Nobeoka Thrust. The detected normal‐faulting‐type stress regimes likely resulted from post‐seismic stress buildup after megathrust earthquakes. The hanging wall of the Nobeoka Thrust has smaller P* values than the footwall. Two possible explanations are proposed for the observed spatial variations in the driving pore fluid pressure ratio, P*: spatial variations in pore fluid pressure Pf are directly responsible for P* variations, or P* variations are controlled by differences in mechanical properties between the hanging wall and footwall.  相似文献   
22.
The results of subsurface gas monitoring by application of gas chromatography (GC) to the gas composition of bubbles associated with groundwater for seismogeochemical studies are reported. An automated gas monitoring system was used to determine gas compositions in a 500-m borehole at the Haruno Crustal Movement Observation Site (HOS), central Japan during period 1, from December 1999 to December 2000. The average ± two standard deviation (2SD) compositions of gases in this period were He = 82 ± 29 ppmV, H2 = 170 ± 62 ppmV, Ar = 0.05 ± 0.07%, N2 = 50 ± 8%, and CH4 = 45 ± 6%. A new automated gas monitoring system equipped with a micro-GC was installed in the borehole at the HOS, and gas bubbles from the borehole were monitored during period 2, from December 2006 to March 2007. The average ± two standard deviation (2SD) compositions of gases in this period were He = 8 ± 7 ppmV, H2 = 13 ± 15 ppmV, Ar = 0.6 ± 0.3%, N2 = 66 ± 7%, and CH4 = 14 ± 14%. The gas concentration ratios (He/Ar, H2/Ar, N2/Ar, and CH4/Ar) fluctuated significantly over time and repeatedly showed abrupt spike-like increases during period 2. The gas compositions obtained in period 1 and 2 were markedly different. Over the period from 2006 to 2007, the gas bubbles were depleted in He, H2, and CH4 of deep origin, but enriched in Ar and N2 of atmospheric origin. This difference can be interpreted as being due to an irreversible change of the aquifer/gas system. The present deep component in the HOS gas is estimated to have composition He = 63 ppmV, H2 = 37 ppmV, Ar = 0.17%, N2 = 63%, and CH4 = 37%. The new monitoring system is able to analyze the gas composition using a smaller volume of sample gas and with greater precision than the previous system. During the 3-month monitoring period 2, the separation capacity of the capillary column of the micro-GC was sufficiently maintained to determine gas-chromatographic peak areas for the five gaseous species examined. This study confirms that the new monitoring system with micro-GC is promising for continuous subsurface gas monitoring for earthquake prediction studies.  相似文献   
23.
Large-eddy simulations are conducted to investigate the effects of the incoming turbulent structure of the flow on pollutant removal from an ideal canyon. The target canyon is a two-dimensional street canyon with an aspect ratio of 1.0 (building height to street width). Three turbulent flows upwind of the street canyon are generated by using different block configurations, and a tracer gas is released as a ground-level line source at the centre of the canyon floor. Mean velocity profiles for the three flows are similar, except near the roof. However, the root-mean-square values of the velocity fluctuations and the Reynolds shear stress increase with the friction velocity of the incoming turbulent flow. The spatially-averaged concentration within the canyon decreases with increasing friction velocity. Coherent structures of low-momentum fluid, generated above the upwind block configurations, contribute to pollutant removal, and the amount of pollutant removal is directly related to the size of the coherent structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号