首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   685篇
  免费   16篇
  国内免费   9篇
测绘学   8篇
大气科学   50篇
地球物理   159篇
地质学   173篇
海洋学   155篇
天文学   121篇
综合类   5篇
自然地理   39篇
  2022年   3篇
  2021年   13篇
  2020年   6篇
  2019年   20篇
  2018年   17篇
  2017年   20篇
  2016年   21篇
  2015年   19篇
  2014年   25篇
  2013年   35篇
  2012年   21篇
  2011年   32篇
  2010年   26篇
  2009年   30篇
  2008年   34篇
  2007年   43篇
  2006年   27篇
  2005年   30篇
  2004年   31篇
  2003年   20篇
  2002年   24篇
  2001年   19篇
  2000年   14篇
  1999年   10篇
  1998年   8篇
  1997年   9篇
  1996年   15篇
  1995年   16篇
  1994年   6篇
  1993年   9篇
  1992年   5篇
  1991年   5篇
  1990年   5篇
  1988年   8篇
  1987年   4篇
  1986年   5篇
  1985年   6篇
  1984年   5篇
  1983年   9篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1977年   3篇
  1976年   8篇
  1975年   7篇
  1973年   8篇
  1972年   4篇
  1971年   4篇
  1969年   2篇
  1967年   2篇
排序方式: 共有710条查询结果,搜索用时 546 毫秒
201.
We conducted full-depth hydrographic observations in the southwestern region of the Northwest Pacific Basin in September 2004 and November 2005. Deep-circulation currents crossed the observation line between the East Mariana Ridge and the Shatsky Rise, carrying Lower Circumpolar Deep Water westward in the lower deep layer (θ<1.2 °C) and Upper Circumpolar Deep Water (UCDW) and North Pacific Deep Water (NPDW) eastward in the upper deep layer (1.3–2.2 °C). In the lower deep layer at depths greater than approximately 3500 m, the eastern branch current of the deep circulation was located south of the Shatsky Rise at 30°24′–30°59′N with volume transport of 3.9 Sv (1 Sv=106 m3 s−1) in 2004 and at 30°06′–31°15′N with 1.6 Sv in 2005. The western branch current of the deep circulation was located north of the Ogasawara Plateau at 26°27′–27°03′N with almost 2.1 Sv in 2004 and at 26°27′–26°45′N with 2.7 Sv in 2005. Integrating past and present results, volume transport southwest of the Shatsky Rise is concluded to be a little less than 4 Sv for the eastern branch current and a little more than 2 Sv for the western branch current. In the upper deep layer at depths of approximately 2000–3500 m, UCDW and NPDW, characterized by high and low dissolved oxygen, respectively, were carried eastward at the observation line by the return flow of the deep circulation composing meridional overturning circulation. UCDW was confined between the East Mariana Ridge and the Ogasawara Plateau (22°03′–25°33′N) in 2004, whereas it extended to 26°45′N north of the Ogasawara Plateau in 2005. NPDW existed over the foot and slope of the Shatsky Rise from 29°48′N in 2004 and 30°06′N in 2005 to at least 32°30′N at the top of the Shatsky Rise. Volume transport of UCDW was estimated to be 4.6 Sv in 2004, whereas that of NPDW was 1.4 Sv in 2004 and 2.6 Sv in 2005, although the values for NPDW may be slightly underestimated, because they do not include the component north of the top of the Shatsky Rise. Volume transport of UCDW and NPDW southwest of the Shatsky Rise is concluded to be approximately 5 and 3 Sv, respectively. The pathways of UCDW and NPDW are new findings and suggest a correction for the past view of the deep circulation in the Pacific Ocean.  相似文献   
202.
An algorithm is presented to retrieve the concentrations of chlorophyll a, suspended pariclulate matter and yellow substance from normalized water-leaving radiances of the Ocean Color and Temperature Sensor (OCTS) of the Advanced Earth Observing Satellite (ADEOS). It is based on a neural network (NN) algorithm, which is used for the rapid inversion of a radiative transfer procedure with the goal of retrieving not only the concentrations of chlorophyll a but also the two other components that determine the water-leaving radiance spectrum. The NN algorithm was tested using the NASA's SeaBAM (SeaWiFS Bio-Optical Mini-Workshop) test data set and applied to ADEOS/OCTS data of the Northwest Pacific in the region off Sanriku, Japan. The root-mean-square error between chlorophyll a concentrations derived from the SeaBAM reflectance data and the chlorophyll a measurements is 0.62. The retrieved chlorophyll a concentrations of the OCTS data were compared with the corresponding distribution obtained by the standard OCTS algorithm. The concentrations and distribution patterns from both algorithms match for open ocean areas. Since there are no standard OCTS products available for yellow substance and suspended matter and no in situ measurements available for validation, the result of the retrieval by the NN for these two variables could only be assessed by a general knowledge of their concentrations and distribution patterns. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
203.
Paleogene surface tectonics in Japan is not well understood because of the paucity of onshore Paleogene stratigraphic records except for those from accretionary complexes. Paralic Paleogene formations remaining in SW Japan are usually so thin that it is difficult to decipher the tectonics from them. However, the Eocene paralic sedimentary package with a thickness of kilometers indicates syn-depositional tectonic subsidence by a few kilometers in the Amakusa archipelago, west of Kyushu Island. Thus, we made a detailed geological map of the Eocene formations in an area of ~50 square kilometers in the northwestern part of the archipelago. We identified NE-SW and NW-SE trending normal faults, most of which were recognized by previous researchers, and also discovered low-angle faults. NW-SE trending ones are known to be of the Miocene. NE-SW trending and low-angle normal faults are the oldest map-scale structures in the Eocene ones. It is not obvious within the above-mentioned area whether those normal faults are accompanied by growth strata. However, the significant southeastward thickening of the Eocene formations across the Amakusa archipelago suggests that they filled a large half graben with the basin margin fault along the eastern side of the archipelago. This basin model is consistent with the N-S to NW-SE transport directions of the low-angle and NE-SW trending normal faults. Since many NE-SW to EW trending Eocene grabens were formed in the offshore regions west of Kyushu Island and in the East China Sea, the Amakusa region was probably a northeastern branch of the rift system. The geologic structures and depositional ages of the Eocene formations indicate that the Eocene extensional tectonics removed the overlying strata to some extent for the high-P/T Takahama Metamorphic Rocks which crops out to the south of our study area.  相似文献   
204.
205.
206.
207.
The Gorny Altai region in southern Siberia is one of the key areas in reconstructing the tectonic evolution of the western segment of the Central Asian Orogenic Belt (CAOB). This region features various orogenic elements of Late Neoproterozoic–Early Paleozoic age, such as an accretionary complex (AC), high-P/T metamorphic (HP) rocks, and ophiolite (OP), all formed by ancient subduction–accretion processes. This study investigated the detailed geology of the Upper Neoproterozoic to Lower Paleozoic rocks in a traverse between Gorno-Altaisk city and Lake Teletskoy in the northern part of the region, and in the Kurai to Chagan-Uzun area in the southern part. The tectonic units of the studied areas consist of (1) the Ediacaran (=Vendian)–Early Cambrian AC, (2) ca. 630 Ma HP complex, (3) the Ediacaran–Early Cambrian OP complex, (4) the Cryogenian–Cambrian island arc complex, and (5) the Middle Paleozoic fore-arc sedimentary rocks. The AC consists mostly of paleo-atoll limestone and underlying oceanic island basalt with minor amount of chert and serpentinite. The basaltic lavas show petrochemistry similar to modern oceanic plateau basalt. The 630 Ma HP complex records a maximum peak metamorphism at 660 °C and 2.0 GPa that corresponds to 60 km-deep burial in a subduction zone, and exhumation at ca. 570 Ma. The Cryogenian island arc complex includes boninitic rocks that suggest an incipient stage of arc development. The Upper Neoproterozoic–Lower Paleozoic complexes in the Gorno-Altaisk city to Lake Teletskoy and the Kurai to Chagan-Uzun areas are totally involved in a subhorizontal piled-nappe structure, and overprinted by Late Paleozoic strike-slip faulting. The HP complex occurs as a nappe tectonically sandwiched between the non- to weakly metamorphosed AC and the OP complex. These lithologic assemblages and geologic structure newly documented in the Gorny Altai region are essentially similar to those of the circum-Pacific (Miyashiro-type) orogenic belts, such as the Japan Islands in East Asia and the Cordillera in western North America. The Cryogenian boninite-bearing arc volcanism indicates that the initial stage of arc development occurred in a transient setting from a transform zone to an incipient subduction zone. The less abundant of terrigenous clastics from mature continental crust and thick deep-sea chert in the Ediacaran–Early Cambrian AC may suggest that the southern Gorny Altai region evolved in an intra-oceanic arc-trench setting like the modern Mariana arc, rather than along the continental arc of a major continental margin. Based on geological, petrochemical, and geochronological data, we synthesize the Late Neoproterozoic to Early Paleozoic tectonic history of the Gorny Altai region in the western CAOB.  相似文献   
208.
209.
The active fault drilling at Nojima Hirabayashi after the 1995 Hyogoken-nanbu (Kobe) earthquake (MJMA = 7.2) provides us with a unique opportunity to investigate subsurface fault structure and the in-situ properties of fault and fluid. The borehole intersected the fault gouge of the Nojima fault at a depth interval of 623 m to 625 m. The lithology is mostly Cretaceous granodiorite with some porphyry dikes.The fault core is highly permeable due to fracturing. The borehole water was sampled in 1996 and 2000 from the depth interval between 630 and 650 m, just below the fault core. The chemical and isotopic compositions were analyzed. Carbon and oxygen isotope ratios of carbonates from the fault core were analyzed to estimate the origin of fluid.The following conclusions were obtained. (1) The ionic and isotopic compositions of borehole water did not change from 1996 to 2000. They are mostly derived from local ground water as mentioned by Sato and Takahashi [Sato, T., Takahashi, M., 2000. Chemical and isotopic compositions of groundwater obtained from the Hirabayashi well. Geological Survey of Japan Interim Report No. EQ/00/1, 187–192.]. (2) Geochemical speciation revealed that the borehole water was derived from a relatively deep reservoir, which may be situated at a depth of 3 to 4 km where the temperature is about 80–90 °C. (3) The shallower part of the Nojima fault (shallower than the reservoir depth) has not been healed from the hydrological viewpoints 5 years after the event, in contrast to the rapid healing detected by S wave splitting [Tadokoro, K., Ando, M., 2002. Evidence for rapid fault healing derived from temporal changes in S wave splitting, Geophys. Res. Lett., 29, 10.1029/2001GL013644.]. (4) Precipitation of calcite from the present borehole water since drilling supports the idea of precipitation of some calcite in coseismic hydraulic fractures in the fault core [Boullier, A-M., Fujimoto, K., Ohtani, T., Roman-Ross, G., Lewin, E., Ito, H., Pezard, P., Ildefonse, B., 2004. Textural evidence for recent co-seismic circulation of fluids in the Nojima fault zone, Awaji Island, Japan., Tectonophysics, 378, 165–181.]. (5) Carbon and oxygen isotope ratios of calcite indicated that the meteoric water flux had been localized at the fault core. (6) A difference in the carbon isotope ratio between the footwall and the hanging wall suggests that the fault has been acted as a hydrologic barrier, although the permeability along the fault is still high.  相似文献   
210.
Larval and juvenile Japanese temperate bass (Lateolabrax japonicus) samples were collected from a wide range of spatial gradients (covering a distance of approximately 30 km) in Chikugo estuary, Ariake Bay, Japan over a period of 8 yr (1997–2004) in order to observe changes in diet. Gut contents were studied by separating, identifying, counting, and estimating the dry weight of prey organisms. Copepod samples were collected during each cruise to observe the numerical composition, abundance, and biomass in the estuary. Considerable spatial and temporal variations were observed in copepod distributions in ambient water and the diets of the fish. Two distinctly different copepod assemblages were identified in the estuary: One in the upper estuarine turbidity maximum (ETM), dominated by a single speciesSinocalanus sinensis and the other in the lower estuary consisting of a multispecies assemblage, dominated byOithona davisae, Acartia omorii, Paracalanus parvus, andCalanus sinicus. The gut content composition of the fish in the upper estuary was dominated byS. sinensis, while in the lower estuary, it consisted ofP. parvus, O. davisae, andA. omorii. Within the size group analyzed (13.0–27.0 mm SL), the smaller individuals were found to feed on a mixed diet composed of smaller prey. The diets gradually shifted to bigger prey composed predominantly ofS. sinensis for larger size groups. Greater proportions of empty guts were recorded in the smaller individuals and dropped with increasing fish size. Higher dry biomass of copepods in the environment, as well as higher dry weights of gut contents, were recorded in the upper estuary, indicating that the upper estuarine ETM areas are important nursery grounds for the early life stages of the Japanese temperate bass. The early life stages of the Japanese temperate bass are adapted to use the upstream nursery grounds and ascending to the nursery areas to useS. sinensis is one of the key survival strategies of the Japanese temperate bass in the Chikugo estuary.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号