首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   685篇
  免费   16篇
  国内免费   9篇
测绘学   8篇
大气科学   50篇
地球物理   159篇
地质学   173篇
海洋学   155篇
天文学   121篇
综合类   5篇
自然地理   39篇
  2022年   3篇
  2021年   13篇
  2020年   6篇
  2019年   20篇
  2018年   17篇
  2017年   20篇
  2016年   21篇
  2015年   19篇
  2014年   25篇
  2013年   35篇
  2012年   21篇
  2011年   32篇
  2010年   26篇
  2009年   30篇
  2008年   34篇
  2007年   43篇
  2006年   27篇
  2005年   30篇
  2004年   31篇
  2003年   20篇
  2002年   24篇
  2001年   19篇
  2000年   14篇
  1999年   10篇
  1998年   8篇
  1997年   9篇
  1996年   15篇
  1995年   16篇
  1994年   6篇
  1993年   9篇
  1992年   5篇
  1991年   5篇
  1990年   5篇
  1988年   8篇
  1987年   4篇
  1986年   5篇
  1985年   6篇
  1984年   5篇
  1983年   9篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1977年   3篇
  1976年   8篇
  1975年   7篇
  1973年   8篇
  1972年   4篇
  1971年   4篇
  1969年   2篇
  1967年   2篇
排序方式: 共有710条查询结果,搜索用时 312 毫秒
101.
A numerical simulation of Otsuchi Bay located on the northeast coast of the Honshu, the largest island of Japan, is conducted, using an ocean general circulation model (OGCM) with a nested-grid system in order to illustrate seasonal variability of the circulation in the bay. Through a year, an anticlockwise circulation is dominant in the bay, as observational studies have implied, although it is modified in the bay-mouth-half of the bay in winter. In addition, there is an intense outflow at the surface layer during spring to autumn, influenced by river water discharge. Intrusion of the Pacific water into the bay is influened by mean circulations, but it is also influenced by baroclinic tides from spring to autumn. Pacific water intrusions affected by baroclinic tides may have an impact on the environment in Otsuchi Bay.  相似文献   
102.
Contaminations in sediments by polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs were investigated at 44 sites in Osaka Bay, Japan. Concentrations of total PAHs and alkylated PAHs were in the range 6.40–7800 ng/g dry weights and 13.7–1700 ng/g dry weights, respectively. The PAH concentrations tended to be higher along the shoreline in the vicinities of big ports, industrialized areas, and densely populated regions such as the cities of Osaka and Kobe. The major sources appeared to be pyrogenic or both pyrogenic and petrogenic at most of the sites. PAH concentrations were remarkably high at a site near Kobe, where the concentrations of dibenzo(a,h)anthracene and benzo(g,h,i)perylene exceeded the effects-range-medium concentration and eight PAHs were above the corresponding effects-range-low concentrations. Those PAHs may have been derived from the great fire associated with the large earthquake in 1995.  相似文献   
103.
Scoria cones are common volcanic features and are thought to most commonly develop through the deposition of ballistics produced by gentle Strombolian eruptions and the outward sliding of talus. However, some historic scoria cones have been observed to form with phases of more energetic violent Strombolian eruptions (e.g., the 1943–1952 eruption of Parícutin, central Mexico; the 1975 eruption of Tolbachik, Kamchatka), maintaining volcanic plumes several kilometers in height, sometimes simultaneous with active effusive lava flows. Geologic evidence shows that violent Strombolian eruptions during cone formation may be more common than is generally perceived, and therefore it is important to obtain additional insights about such eruptions to better assess volcanic hazards. We studied Irao Volcano, the largest basaltic monogenetic volcano in the Abu Monogenetic Volcano Group, SW Japan. The geologic features of this volcano are consistent with a violent Strombolian eruption, including voluminous ash and fine lapilli beds (on order of 10?1 km3 DRE) with simultaneous scoria cone formation and lava effusion from the base of the cone. The characteristics of the volcanic products suggest that the rate of magma ascent decreased gradually throughout the eruption and that less explosive Strombolian eruptions increased in frequency during the later stages of activity. During the eruption sequence, the chemical composition of the magma became more differentiated. A new K–Ar age determination for phlogopite crystallized within basalt dates the formation of Irao Volcano at 0.4?±?0.05 Ma.  相似文献   
104.
To investigate temporal and spatial evolution of global geomagnetic field variations from high-latitude to the equator during geomagnetic storms, we analyzed ground geomagnetic field disturbances from high latitudes to the magnetic equator. The daytime ionospheric equivalent current during the storm main phase showed that twin-vortex ionospheric currents driven by the Region 1 field-aligned currents (R1 FACs) are intensified significantly and expand to the low-latitude region of-30~ magnetic latitude. Centers of the currents were located around 70~ and 65~ in the morning and afternoon, respectively. Corresponding to intensification of the R1 FACs, an enhancement of the eastward/westward equatorial electrojet occurred at the daytime/nighttime dip equator. This signature suggests that the enhanced convection electric field penetrates to both the daytime and nighttime equa- tor. During the recovery phase, the daytime equivalent current showed that two new pairs of twin vortices, which are different from two-cell ionospheric currents driven by the R1 FACs, appear in the polar cap and mid latitude. The former led to enhanced north- ward Bz (NBZ) FACs driven by lobe reconnection tailward of the cusps, owing to the northward interplanetary magnetic field (IMF). The latter was generated by enhanced Region 2 field-aligned currents (R2 FACs). Associated with these magnetic field variations in the mid-latitudes and polar cap, the equatorial magnetic field variation showed a strongly negative signature, produced by the westward equatorial electrojet current caused by the dusk-to-dawn electric field.  相似文献   
105.
The inner part of the Ariake Sea is one of the most productive estuarine systems in Japan. To examine potential food items for estuarine organisms, we conducted monthly observations of the dynamics of particulate organic matter along the macrotidal Chikugo River estuary in 2005 and 2006. In the neighboring macrotidal Midori and Kuma River estuaries, comparative observations were made. High turbidity and strong vertical mixing were observed only at low salinities (<10) in the Chikugo River estuary. In contrast, the Midori and Kuma River estuaries were characterized by less turbid and less mixed waters. Concentrations of particulate organic carbon often exceeded 5?mg?l?1 in or close to the estuarine turbidity maximum (ETM) of the Chikugo River estuary. However, such high concentrations were rarely observed in the other two estuaries. The observed differences could be attributable to different hydrodynamic processes related to the different lengths of tidal reaches: 23, 8, and 6?km in the Chikugo, Midori, and Kuma Rivers, respectively. In the Chikugo River estuary, spatiotemporal changes of chlorophyll a suggested that phytoplankton occurred abundantly up- and/or downstream from the ETM especially during the warm season. In contrast, pheophytin (i.e., plant detritus) always accumulated in or close to the ETM. Carbon stable isotope ratios and carbon to nitrogen ratios indicated that the plant detritus was derived from phytoplankton and terrestrial plants. The Chikugo River estuary has a high potential to support the production of estuarine organisms through abundant plant detritus in the well-developed ETM all the year round.  相似文献   
106.
107.
The mixed layer depth (MLD) front and subduction under seasonal variability are investigated using an idealized ocean general circulation model (OGCM) with simple seasonal forcings. A sharp MLD front develops and subduction occurs at the front from late winter to early spring. The position of the MLD front agrees with the curve where \({\rm D}T_{\rm s}/{\rm D}t = \partial T_{\rm s} /\partial t + {\user2{u}}_{\rm g} \cdot \nabla T_{\rm s} = 0\) is satisfied (t is time, \({\user2{u}}_{\rm g}\) is the upper-ocean geostrophic velocity, \(T_{\rm s}\) is the sea surface temperature (SST), and \(\nabla\) is the horizontal gradient operator), indicating that thick mixed-layer water is subducted there parallel to the SST contour. This is a generalization of the past result that the MLD front coincides with the curve \({\user2{u}}_{\rm g} \cdot \nabla T_{\rm s} = 0\) when the forcing is steady. Irreversible subduction at the MLD front is limited to about 1 month, where the beginning of the irreversible subduction period agrees with the first coincidence of the MLD front and \({\rm D}T_{\rm s}/{\rm D}t =0\) in late winter, and the end of the period roughly corresponds to the disappearance of the MLD front in early spring. Subduction volume at the MLD front during this period is similar to that during 1 year in the steady-forcing model. Since the cooling of the deep mixed-layer water occurs only in winter and SST can not fully catch up with the seasonally varying reference temperature of restoring, the cooling rate of SST is reduced and the zonal gradient of the SST in the northwestern subtropical gyre is a little altered in the seasonal-forcing case. These effects result in slightly lower densities of subducted water and the eastward shift of the MLD front.  相似文献   
108.
Devolatilization reactions during prograde metamorphism are a key control on the fluid distribution within subduction zones. Garnets in Mn-rich quartz schist within the Sanbagawa metamorphic belt of Japan are characterized by skeletal structures containing abundant quartz inclusions. Each quartz inclusion was angular-shaped, and showed random crystallographic orientations, suggesting that these quartz inclusions were trapped via grain boundary cracking during garnet growth. Such skeletal garnet within the quartz schist formed related to decarbonation reactions with a positive total volume change (?V t > 0), whereas the euhedral garnet within the pelitic schists formed as a result of dehydration reaction with negative ?V t values. Coupled hydrological–chemical–mechanical processes during metamorphic devolatilization reactions were investigated by a distinct element method (DEM) numerical simulation on a foliated rock that contained reactive minerals and non-reactive matrix minerals. Negative ?V t reactions cause a decrease in fluid pressure and do not produce fractures within the matrix. In contrast, a fluid pressure increase by positive ?V t reactions results in hydrofracturing of the matrix. This fracturing preferentially occurs along grain boundaries and causes episodic fluid pulses associated with the development of the fracture network. The precipitation of garnet within grain boundary fractures could explain the formation of the skeletal garnet. Our DEM model also suggests a strong influence of reaction-induced fracturing on anisotropic fluid flow, meaning that dominant fluid flow directions could easily change in response to changes in stress configuration and the magnitude of differential stress during prograde metamorphism within a subduction zone.  相似文献   
109.
Achieving an understanding of the nature of monogenetic volcanic fields depends on identification of the spatial and temporal patterns of volcanism in these fields, and their relationships to structures mapped in the shallow crust and inferred in the deep crust and mantle through interpretation of geophysical data. We investigate the spatial and temporal distributions of volcanism in the Abu Monogenetic Volcano Group, Southwest Japan, and compare these distributions to fault and seismic data in the brittle crust, and P-wave tomography of the crust and upper mantle. Essential characteristics of the volcano distribution are extracted by a nonparametric kernel method using an algorithm to estimate anisotropic bandwidth. Overall, E-W elongate smooth modes in spatial density are identified that are consistent with the spatial extent of P-wave velocity anomalies in the lower crust and upper mantle, supporting the idea that the spatial density map of volcanic vents reflects the geometry of a mantle diapir. While the number of basalt eruptions decreased after 0.2 Ma, andesite eruptions increased and overall volume eruption rate is approximately steady-state. Estimated basalt supply to the lower crust is also constant. This observation and the spatial distribution of volcanic vents suggest stability of magma productivity and essentially constant two-dimensional size of the source mantle diapir since 0.46 Ma.  相似文献   
110.
A buried, old volcanic body (pre‐Komitake Volcano) was discovered during drilling into the northeastern flank of Mount Fuji. The pre‐Komitake Volcano is characterized by hornblende‐bearing andesite and dacite, in contrast to the porphyritic basaltic rocks of Komitake Volcano and to the olivine‐bearing basaltic rocks of Fuji Volcano. K‐Ar age determinations and geological analysis of drilling cores suggest that the pre‐Komitake Volcano began with effusion of basaltic lava flows around 260 ka and ended with explosive eruptions of basaltic andesite and dacite magma around 160 ka. After deposition of a thin soil layer on the pre‐Komitake volcanic rocks, successive effusions of lava flows occurred at Komitake Volcano until 100 ka. Explosive eruptions of Fuji Volcano followed shortly after the activity of Komitake. The long‐term eruption rate of about 3 km3/ka or more for Fuji Volcano is much higher than that estimated for pre‐Komitake and Komitake. The chemical variation within Fuji Volcano, represented by an increase in incompatible elements at nearly constant SiO2, differs from that within pre‐Komitake and other volcanoes in the northern Izu‐Bonin arc, where incompatible elements increase with increasing SiO2. These changes in the volcanism in Mount Fuji may have occurred due to a change in regional tectonics around 150 ka, although this remains unproven.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号