首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   0篇
地球物理   19篇
地质学   20篇
海洋学   8篇
天文学   1篇
自然地理   3篇
  2021年   1篇
  2018年   1篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2010年   2篇
  2009年   4篇
  2008年   5篇
  2007年   5篇
  2006年   3篇
  2004年   3篇
  2003年   2篇
  2001年   3篇
  2000年   2篇
  1998年   1篇
  1997年   2篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1983年   1篇
  1978年   2篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
11.
Fluctuations in relative sea level, tectonic movement, and sedimentation during the late Pleistocene to Holocene in the Hisarönü Gulf (SE Aegean Sea) and surrounding area were investigated with a high‐resolution geophysical survey and underwater archaeological observations. The Hisarönü Gulf has been affected by vertical tectonic movements and rising sea level following the last glacial period (20,000 yr B.P.). High‐resolution seismic data were interpreted to reveal the structure of the late Pleistocene to Holocene deposits and determine the location of the paleoshoreline. In order to describe the relative rise of sea level, principles of sequence stratigraphy were used for the late Pleistocene to Holocene transition, and submerged archaeological remains and bioerosional indicators were used for the late Holocene period. A comparison of archaeological observations in the study area with the known regional sea level curve indicates that the relative rise in sea level for the late Holocene is, for the most part, due to the tectonic subsidence of the coastal plain. © 2012 Wiley Periodicals, Inc.  相似文献   
12.
Small-scale structures along strike-slip fault zones in limestones exposed around the Bristol Channel, U.K., suggest that pressure solution plays a key role during fault nucleation and growth. Incipient shear zones consist of enéchelon veins. The first generation of solution seams form due to bending of the intact rock (bridge) between overlapping veins. As the bridge rotates, slip occurs along the seams, linking the veins, causing cm-scale calcite-filled pull-apart structures to form and allowing fault displacement to increase. A second generation of solution seams forms at the tip of the sliding seams. As displacement increases further, causing larger rotation, slip also can occur along these second-generation solution seams, producing the third generation of solution seams as well as tail cracks (pinnate veins) at their tips. These three generations of solution seams all contribute to the formation of individual fault segments. Fourth and fifth generations of solution seams occur within larger-scale contractional oversteps between side-stepping fault segments. The oversteps are breached by slip along these localized solution seams, eventually leading to the formation of a distinct through-going fault with several metres of displacement.The initial enéchelon veins, solution seams of various generations and tail cracks progressively fragment the fault-zone material as fault slip accumulates. Slip planes nucleate on these pre-existing discontinuities, principally along the clay-enriched, weaker solution seams. This can be observed at a variety of scales and suggests that Mode II shear fracturing does not occur as a primary fracture mechanism, but only as a macroscopic phenomenon following Mode I (veins and tail cracks) and anti-mode I (solution seams) deformation. It appears that solution seams can play a similar role to microcracks in localizing a through-going slip plane. This micromechanical model of faulting may be applicable to some other faults and shear zones in host rocks which are prone to pressure solution.  相似文献   
13.
This study was conducted to determine the effects of the waste-rock dump (WRD) of the underground polymetallic Balya Mine on the Kocacay River and eventually on Lake Manyas in Turkey. Data presented in this paper include geochemical characteristics of various kinds of water (mine, surface and groundwater) and of suspended-particle samples in the vicinity of Balya. The more polluted mine waters have low pH and high conductivity, while high concentrations of Zn, Cd, Mn tend to be found in the dry and wet seasons. High concentrations of Pb, As, Cr, Cu and S appear only in the wet season. The sources of the heavy metal concentration within the Kocacay River are leached waste, surface run off, and overflow from the spillway of the WRD. To minimize the formation of acids and dissolved metal, and for the remediation of the harmful effects of extreme contamination conditions, it is recommended that lime or alkali materials and organic carbon be added to simulate the action of sulfate-reducing bacteria.  相似文献   
14.
15.
16.
The objectives of the Istanbul Seismic Risk Mitigation and Emergency Preparedness Project are to improve Istanbul’s preparedness for a potential earthquake. Within this framework “Risk Assessment of Cultural Heritage Buildings” was designed to address the vulnerability of cultural assets, specifically buildings with global cultural heritage value. One of the components of the project was the vulnerability and risk assessment of 170 historical buildings. After a discussion of the choice of the most appropriate earthquake scenario, the methodology used for assessing the effects of local site conditions on the seismic performance of selected cultural heritage buildings is presented. The purpose is to estimate the earthquake characteristics on the ground surface based on the earthquake characteristics on the engineering bedrock outcrop obtained from the probabilistic and deterministic hazard studies. The site specific elastic design spectra for each site are then further manipulated to obtain site specific non linear displacement spectra, so that these can be directly compared with capacity curves for the buildings obtained by using plasticity based limit state analysis. The procedure for obtaining the capacity curves is described and the choice of the most appropriate level of ductility and the equivalent reduction coefficient are discussed. A procedure to evaluate performance points and to define safety factors based on lateral acceleration, drift or expected damage level, is presented. The process of arriving at a risk evaluation and hence recommendation for strengthening or otherwise, is finally highlighted with respect to two comparable case studies.  相似文献   
17.
A methodology for seismic microzonation and earthquake damage scenarios may be considered as composed of two stages. In the first stage, microzonation maps with respect to estimated earthquake characteristics on the ground surface are generated for an investigated urban area. The effects of local geological and geotechnical site conditions are taken into account based on site characterization with respect to representative soil profiles extending down to the engineering bedrock. 1D site response analyses are performed to calculate earthquake characteristics on the ground surface using as many as possible, hazard compatible real acceleration time histories. In the second stage, vulnerability of buildings and pipeline systems are estimated based on site-specific ground motion parameters. A pilot study is carried out to evaluate seismic damage in a district in Istanbul, Turkey. The results demonstrate the significance of site characterization and site response analysis in calculating the earthquake characteristics on the ground surface in comparison to simplified empirical procedures.  相似文献   
18.
The rapid urban development in Istanbul has lead to an increase in the exposure levels of the urban vulnerability. Due to the steadily increasing population, with improper land-use planning, inappropriate construction techniques and inadequate infrastructure systems, associated with an existing high hazard level, Istanbul is one of the most risky cities in the Mediterranean region. Estimations of casualties and losses, expected for given earthquake scenarios, are necessary to develop sustainable rehabilitation programs and for improving preparedness. Deterministic hazard scenarios and time-dependent probabilistic hazard assessment were used as input to a GIS-based loss estimation model, to evaluate the earthquake risk for Istanbul.  相似文献   
19.
The cyclic stress-strain behaviour of cohesionless soils is considered to be composed of elastic and inelastic components, and the cyclic elastic stress-strain relationships for one type of uniform sand are investigated by conducting isotropic and laterally constrained compression tests under low frequency cyclic loads. The effects of relative density, stress history, and stress state on the cyclic elastic behaviour are studied. Simple and practically applicable elastic stress-strain models are developed based on Hertzian contact theory. It was observed in both types of tests that elastic strains can accurately be modelled by a power function of stresses.  相似文献   
20.
Large earthquakes in strike-slip regimes commonly rupture fault segments that are oblique to each other in both strike and dip. This was the case during the 1999 Izmit earthquake, which mainly ruptured E–W-striking right-lateral faults but also ruptured the N60°E-striking Karadere fault at the eastern end of the main rupture. It will also likely be so for any future large fault rupture in the adjacent Sea of Marmara. Our aim here is to characterize the effects of regional stress direction, stress triggering due to rupture, and mechanical slip interaction on the composite rupture process. We examine the failure tendency and slip mechanism on secondary faults that are oblique in strike and dip to a vertical strike-slip fault or “master” fault. For a regional stress field well-oriented for slip on a vertical right-lateral strike-slip fault, we determine that oblique normal faulting is most favored on dipping faults with two different strikes, both of which are oriented clockwise from the strike-slip fault. The orientation closer in strike to the master fault is predicted to slip with right-lateral oblique normal slip, the other one with left-lateral oblique normal slip. The most favored secondary fault orientations depend on the effective coefficient of friction on the faults and the ratio of the vertical stress to the maximum horizontal stress. If the regional stress instead causes left-lateral slip on the vertical master fault, the most favored secondary faults would be oriented counterclockwise from the master fault. For secondary faults striking ±30° oblique to the master fault, right-lateral slip on the master fault brings both these secondary fault orientations closer to the Coulomb condition for shear failure with oblique right-lateral slip. For a secondary fault striking 30° counterclockwise, the predicted stress change and the component of reverse slip both increase for shallower-angle dips of the secondary fault. For a secondary fault striking 30° clockwise, the predicted stress change decreases but the predicted component of normal slip increases for shallower-angle dips of the secondary fault. When both the vertical master fault and the dipping secondary fault are allowed to slip, mechanical interaction produces sharp gradients or discontinuities in slip across their intersection lines. This can effectively constrain rupture to limited portions of larger faults, depending on the locations of fault intersections. Across the fault intersection line, predicted rakes can vary by >40° and the sense of lateral slip can reverse. Application of these results provides a potential explanation for why only a limited portion of the Karadere fault ruptured during the Izmit earthquake. Our results also suggest that the geometries of fault intersection within the Sea of Marmara favor composite rupture of multiple oblique fault segments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号