首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   4篇
大气科学   1篇
地球物理   18篇
地质学   4篇
海洋学   2篇
自然地理   1篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   1篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有26条查询结果,搜索用时 196 毫秒
11.
Groundwater recharge estimation is a critical quantity for sustainable groundwater management. The feasibility and robustness of recharge estimation was evaluated using physical‐based modeling procedures, and data from a low‐cost weather station with remote sensor techniques in Southern Abbotsford, British Columbia, Canada. Recharge was determined using the Richards‐based vadose zone hydrological model, HYDRUS‐1D. The required meteorological data were recorded with a HOBOTM weather station for a short observation period (about 1 year) and an existing weather station (Abbotsford A) for long‐term study purpose (27 years). Undisturbed soil cores were taken at two locations in the vicinity of the HOBOTM weather station. The derived soil hydraulic parameters were used to characterize the soil in the numerical model. Model performance was evaluated using observed soil moisture and soil temperature data obtained from subsurface remote sensors. A rigorous sensitivity analysis was used to test the robustness of the model. Recharge during the short observation period was estimated at 863 and 816 mm. The mean annual recharge was estimated at 848 and 859 mm/year based on a time series of 27 years. The relative ratio of annual recharge‐precipitation varied from 43% to 69%. From a monthly recharge perspective, the majority (80%) of recharge due to precipitation occurred during the hydrologic winter period. The comparison of the recharge estimates with other studies indicates a good agreement. Furthermore, this method is able to predict transient recharge estimates, and can provide a reasonable tool for estimates on nutrient leaching that is often controlled by strong precipitation events and rapid infiltration of water and nitrate into the soil.  相似文献   
12.
Attenuation of P- and S-waves in limestones   总被引:2,自引:1,他引:1  
Ultrasonic compressional- and shear-wave attenuation measurements have been made on 40, centimetre-sized samples of water- and oil-saturated oolitic limestones at 50 MPa effective hydrostatic pressure (confining pressure minus pore-fluid pressure) at frequencies of about 0.85 MHz and 0.7 MHz respectively, using the pulse-echo method. The mineralogy, porosity, permeability and the distribution of the pore types of each sample were determined using a combination of optical and scanning electron microscopy, a helium porosimeter and a nitrogen permeameter. The limestones contain a complex porosity system consisting of interparticle macropores (dimensions up to 300 microns) and micropores (dimensions 5–10 microns) within the ooids, the calcite cement and the mud matrix. Ultrasonic attenuation reaches a maximum value in those limestones in which the dual porosity system is most fully developed, indicating that the squirt-flow mechanism, which has previously been shown to occur in shaley sandstones, also operates in the limestones. It is argued that the larger-scale dual porosity systems present in limestones in situ could similarly cause seismic attenuation at the frequencies of field seismic surveys through the operation of the squirt-flow mechanism.  相似文献   
13.
Fluctuations of groundwater levels were used to predict soluble phosphorus concentrations. In‐situ observations showed a decrease in soluble phosphorus during groundwater recession and an increase with groundwater rise. A spatial analysis of the simulated soluble phosphorus and groundwater levels indicated similarity of patterns (spatial correlation) 99% of the time. A geographically weighted multivariate analysis of soluble phosphorus using groundwater levels, phosphorus levels of the Kissimmee River, and distance from the Kissimmee River as predictors showed a goodness of fit (R2) ranging from 0.2 to 0.7. Results indicated no significant difference between the simulated and observed soluble phosphorus levels at a p value of 0.01. Among the parameters, the groundwater level explained 70% of the soluble phosphorus variability. The distance to surface waterbodies and their phosphorus levels had significant weights only within a 5‐km range from the waterbody. A model generalization is further required to simulate the spatiotemporal groundwater–phosphorus dynamics over meaningful temporal ranges – at least for 3 to 5 years – for conclusiveness of the data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
14.
The delicate balance between human utilization and sustaining its pristine biodiversity in the Mara River basin (MRB) is being threatened because of the expansion of agriculture, deforestation, human settlement, erosion and sedimentation and extreme flow events. This study assessed the applicability of the Soil and Water Assessment Tool (SWAT) model for long‐term rainfall–runoff simulation in MRB. The possibilities of combining/extending gage rainfall data with satellite rainfall estimates were investigated. Monthly satellite rainfall estimates not only overestimated but also lacked the variability of observed rainfall to substitute gage rainfall in model simulation. Uncertainties related to the quality and availability of input data were addressed. Sensitivity and uncertainty analysis was reported for alternative model components and hydrologic parameters used in SWAT. Mean sensitivity indices of SWAT parameters in MRB varied with and without observed discharge data. The manual assessment of individual parameters indicated heterogeneous response among sub‐basins of MRB. SWAT was calibrated and validated with 10 years of discharge data at Bomet (Nyangores River), Mulot (Amala River) and Mara Mines (Mara River) stations. Model performance varied from satisfactory at Mara Mines to fair at Bomet and weak at Mulot. The (Nash–Sutcliff efficiency, coefficient of determination) results of calibration and validation at Mara Mines were (0.68, 0.69) and (0.43, 0.44), respectively. Two years of moving time window and flow frequency analysis showed that SWAT performance in MRB heavily relied on quality and abundance of discharge data. Given the 5.5% area contribution of Amala sub‐basin as well as uncertainty and scarcity of input data, SWAT has the potential to simulate the rainfall runoff process in the MRB. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
15.
The level of Lake Tana, Ethiopia, fluctuates annually and seasonally following the patterns of changes in precipitation. In this study, a mass balance approach is used to estimate the hydrological balance of the lake. Water influx from four major rivers, subsurface inflow from the floodplains, precipitation, outflow from the lake constituting river discharge and evapotranspiration from the lake are analysed on monthly and annual bases. Spatial interpolation of precipitation using rain gauge data was conducted using kriging. Outflow from the lake was identified as the evaporation from the lake's surface as well as discharge at the outlet where the Blue Nile commences. Groundwater inflow is estimated using MODular three‐dimensional finite‐difference ground‐water FLOW model software that showed an aligned flow pattern to the river channels. The groundwater outflow is considered negligible based on the secondary sources that confirmed the absence of lake water geochemical mixing outside of the basin. Evaporation is estimated using Penman's, Meyer's and Thornwaite's methods to compare the mass balance and energy balance approaches. Meteorological data, satellite images and temperature perturbation simulations from Global Historical Climate Network of National Oceanographic and Atmospheric Administration are employed for estimation of evaporation input parameters. The difference of the inflow and outflow was taken as storage in depth and compared with the measured water level fluctuations. The study has shown that the monthly and annually calculated lake level replicates the observed values with root mean square error value of 0·17 and 0·15 m, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
16.
Land surface energy fluxes are required in many environmental studies, including hydrology, agronomy and meteorology. Surface energy balance models simulate microscale energy exchange processes between the ground surface and the atmospheric layer near ground level. Spatial variability of energy fluxes limits point measurements to be used for larger areas. Remote sensing provides the basis for spatial mapping of energy fluxes. Remote‐sensing‐based surface energy flux‐mapping was conducted using seven Landsat images from 1997 to 2002 at four contiguous crop fields located in Polk County, northwestern Minnesota. Spatially distributed surface energy fluxes were estimated and mapped at 30 m pixel level from Landsat Thematic Mapper and Enhanced Thematic Mapper images and weather information. Net radiation was determined using the surface energy balance algorithm for land (SEBAL) procedure. Applying the two‐source energy balance (TSEB) model, the surface temperature and the latent and sensible heat fluxes were partitioned into vegetation and soil components and estimated at the pixel level. Yield data for wheat and soybean from 1997 to 2002 were mapped and compared with latent heat (evapotranspiration) for four of the fields at pixel level. The spatial distribution and the relation of latent heat flux and Bowen ratio (ratio of sensible heat to latent heat) to crop yield were studied. The root‐mean‐square error and the mean absolute percentage of error between the observed and predicted energy fluxes were between 7 and 22 W m−2 and 12 and 24% respectively. Results show that latent heat flux and Bowen ratio were correlated (positive and negative) to the yield data. Wheat and soybean yields were predicted using latent heat flux with mean R2 = 0·67 and 0·70 respectively, average residual means of −4·2 bushels/acre and 0·11 bushels/acre respectively, and average residual standard deviations of 16·2 bushels/acre and 16·6 bushels/acre respectively (1 bushel/acre ≈ 0·087 m3 ha−1). The flux estimation procedure from the SEBAL‐TSEB model was useful and applicable to agricultural fields. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
17.
Here we present a new mathematical tool, the localized Hartley (HL) transform (Hartley, 1942; Bracewell, 1990), that allows for the filtering of 1-D time series through the identification of the power at various spatial and temporal wavelengths. Its application to and the associated results are presented from its application to continuous Global Positioning System (GPS) data from southern California for the time period 1994 through 2006. The HL transform filter removes the high-frequency components of the data and effectively isolates the longer period signal. This long-period signal is modeled as time-dependent postseismic deformation using the viscoelastic-gravitational model of Fernández and Rundle (2004) for six stations selected for their proximity to the Northridge earthquake. The x-, y-, and z-components of the postseismic deformation are compared to the filtered data. Results suggest that this long-period deformation is a result of postseismic relaxation and that the HL transform filter provides an important new technique for the filtering of geophysical data consisting of the superposition of the effects of numerous complex sources at a variety of spatial and temporal scales.  相似文献   
18.
The quantification of the various components of hydrological processes in a watershed remains a challenging topic as the hydrological system is altered by internal and external drivers. Watershed models have become essential tools to understand the behaviour of a catchment under dynamic processes. In this study, a physically based watershed model called Soil Water Assessment Tool was used to understand the hydrologic behaviour of the Upper Tiber River Basin, Central Italy. The model was successfully calibrated and validated using observed weather and flow data for the period of 1963–1970 and 1971–1978, respectively. Eighteen parameters were evaluated, and the model showed high relative sensitivity to groundwater flow parameters than the surface flow parameters. An analysis of annual hydrological water balance was performed for the entire upper Tiber watershed and selected subbasins. The overall behaviour of the watershed was represented by three categories of parameters governing surface flow, subsurface flow and whole basin response. The base flow contribution has shown that 60% of the streamflow is from shallow aquifer in the subbasins. The model evaluation statistics that evaluate the agreement between the simulated and the observed streamflow at the outlet of a watershed and other three different subbasins has shown a coefficient of determination (R2) from 0.68 to 0.81 and a Nash–Sutcliffe efficiency (ENS) between 0.51 and 0.8 for the validation period. The components of the hydrologic cycle showed variation for dry and wet periods within the watershed for the same parameter sets. On the basis of the calibrated parameters, the model can be used for the prediction of the impact of climate and land use changes and water resources planning and management. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
19.
Accurate estimation of evapotranspiration (ET) is essential in water resources management and hydrological practices. Estimation of ET in areas, where adequate meteorological data are not available, is one of the challenges faced by water resource managers. Hence, a simplified approach, which is less data intensive, is crucial. The FAO‐56 Penman–Monteith (FAO‐56 PM) is a sole global standard method, but it requires numerous weather data for the estimation of reference ET. A new simple temperature method is developed, which uses only maximum temperature data to estimate ET. Ten class I weather stations data were collected from the National Meteorological Agency of Ethiopia. This method was compared with the global standard PM method, the observed Piche evaporimeter data, and the well‐known Hargreaves (HAR) temperature method. The coefficient of determination (R2) of the new method was as high as 0.74, 0.75, and 0.91, when compared with that of PM reference evapotranspiration (ETo), Piche evaporimeter data, and HAR methods, respectively. The annual average R2 over the ten stations when compared with PM, Piche, and HAR methods were 0.65, 0.67, and 0.84, respectively. The Nash–Sutcliff efficiency of the new method compared with that of PM was as high as 0.67. The method was able to estimate daily ET with an average root mean square error and an average absolute mean error of 0.59 and 0.47 mm, respectively, from the PM ETo method. The method was also tested in dry and wet seasons and found to perform well in both seasons. The average R2 of the new method with the HAR method was 0.82 and 0.84 in dry and wet seasons, respectively. During validation, the average R2 and Nash–Sutcliff values when compared with Piche evaporation were 0.67 and 0.51, respectively. The method could be used for the estimation of daily ETo where there are insufficient data. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号