首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   333篇
  免费   3篇
  国内免费   2篇
测绘学   33篇
大气科学   31篇
地球物理   43篇
地质学   88篇
海洋学   19篇
天文学   114篇
自然地理   10篇
  2022年   3篇
  2021年   7篇
  2020年   3篇
  2019年   5篇
  2018年   15篇
  2017年   8篇
  2016年   14篇
  2015年   9篇
  2014年   13篇
  2013年   22篇
  2012年   14篇
  2011年   18篇
  2010年   13篇
  2009年   12篇
  2008年   16篇
  2007年   16篇
  2006年   19篇
  2005年   13篇
  2004年   8篇
  2003年   11篇
  2002年   8篇
  2001年   5篇
  2000年   9篇
  1999年   3篇
  1998年   8篇
  1997年   6篇
  1996年   4篇
  1995年   4篇
  1994年   5篇
  1993年   4篇
  1992年   2篇
  1991年   5篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有338条查询结果,搜索用时 15 毫秒
281.
We present Hα observations from ARIES (Nainital) of a compact and impulsive solar flare that occurred on March 10, 2001 and which was associated with a CME. We have also analyzed HXT, SXT/Yohkoh observations as well as radio observations from the Nobeyama Radio Observatory to derive the energetics and dynamics of this impulsive flare. We coalign the Hα, SXR, HXR, MW, and magnetogram images within the instrumental spatial-resolution limit. We detect a single HXR source in this flare, which is found spatially associated with one of the Hα bright kernels. The unusual feature of HXR and Hα sources, observed for the first time, is the rotation during the impulsive phase in a clockwise direction. We propose that the rotation may be due to asymmetric progress of the magnetic reconnection site or may be due to the change of the peak point of the electric field. In MW emission we found two sources. The main source is at the main flare site and another is in the southwest direction. It appears that the remote source is formed by the impact of accelerated energetic electrons from the main flare site. From the spatial correlation of multiwavelength images of the different sources, we conclude that this flare has a three-legged structure.  相似文献   
282.
The precipitation by Relaxed Arakawa–Schubert cumulus parameterization in a General Circulation Model (GCM) is sensitive to the choice of relaxation parameter or specified cloud adjustment time scale. In the present study, we examine sensitivity of simulated precipitation to the choice of cloud adjustment time scale (τadj) over different parts of the tropics using National Center for Environmental Prediction (NCEP) Seasonal Forecast Model (SFM) during June–September. The results show that a single specified value of τadj performs best only over a particular region and different values are preferred over different parts of the world. To find a relation between τadj and cloud depth (convective activity) we choose six regions over the tropics. Based on the observed relation between outgoing long-wave radiation and τadj,?we propose a linear cloud-type dependent relaxation parameter to be used in the model. The simulations over most parts of the tropics show improved results due to this newly formulated cloud-type dependent relaxation parameter.  相似文献   
283.
C. K. Jain  I. Ali 《水文研究》2000,14(2):261-270
The effects of solution pH, sediment dose, contact time, and particle size on the adsorption of cadmium ions on bed sediments have been studied for a highly polluted river in western Uttar Pradesh, India. The role of the coarser sediment and the clay and silt fractions has been examined. The optimum contact time needed to reach equilibrium is of the order of 30 and 60 min for 0–75 μm and 210–250 μm sediment size, respectively. The extent of cadmium adsorption increases with increasing pH and adsorbent doses and decreases with adsorbent particle size. The important geochemical phases, iron and manganese oxide, provide the active support material for the adsorption of cadmium. The competitive experiments conducted in the presence of lead and zinc ions indicate that both the ions suppress the ability of cadmium to adsorb on to sediments. The Langmuir and Freundlich adsorption models were used to determine the mechanistic parameters associated with the adsorption process. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
284.
Drought is a serious climatic condition that affects nearly all climatic zones worldwide, with semi-arid regions being especially susceptible to drought conditions because of their low annual precipitation and sensitivity to climate changes. Drought indices such as the standardized precipitation index (SPI) using meteorological data and vegetation indices from satellite data were developed for quantifying drought conditions. Remote sensing of semi-arid vegetation can provide vegetation indices which can be used to link drought conditions when correlated with various meteorological data based drought indices. The present study was carried out for drought monitoring for three districts namely Bhilwara, Kota and Udaipur of Rajasthan state in India using SPI, normalized difference vegetation index (NDVI), water supply vegetation index (WSVI) and vegetation condition index (VCI) derived from the Advanced Very High resolution Radiometer (AVHRR). The SPI was computed at different time scales of 1, 2, 3, 6, 9 and 12 months using monthly rainfall data. The NDVI and WSVI were correlated to the SPI and it was observed that for the three stations, the correlation coefficient was high for different time scales. Bhilwara district having the best correlation for the 9-month time scale shows late response while Kota district having the best correlation for 1-month shows fast response. On the basis of the SPI analysis, it was found that the area was worst affected by drought in the year 2002. This was validated on the basis of NDVI, WSVI and VCI. The study clearly shows that integrated analysis of ground measured data and satellite data has a great potential in drought monitoring.  相似文献   
285.
Recurrence of torsional failure of elevated water tanks in past earthquakes (including 1952 Kern County and recent 1993 Killari earthquakes) has highlighted the importance of this problem. It is established that these structures may have amplified torsion-induced rotation if their torsional-to-lateral natural period ratio τ is close to 1 and amplified displacement of structural elements due to the coupled lateral-torsional vibration if τ is within the critical range 0.7<τ<1.25. The present study aims to estimate the range of variation of τ for usually constructed reinforced concrete elevated water tanks with frame-type stagings for assessing their torsional vulnerability. Closed-form expressions for torsional and lateral stiffness of tank stagings are derived and verified by standard finite element software. These expressions are used for studying the variation of τ for feasible ranges of influencing parameters. It is seen that a very large number of such tanks may have τ within the said critical range. Closed-form expressions for moments and shear forces of columns and beams under torsion and that under lateral force are also derived. It is also seen with the help of these expressions that the frame stagings of these tanks normally designed for seismic lateral force, may yield through formation of plastic hinges simultaneously in all columns instead of in beams if they are subjected to large rotational response for having τ possibly very close to 1. Such a pattern of yielding generally converts the whole system suddenly into a mechanism causing immediate collapse. Therefore, torsional coupling seems to be a potential cause of failure for these structures.  相似文献   
286.
A terrestrial-biosphere carbon-sink has been included in global carbon-cycle models in order to reproduce past atmospheric CO2, 13C and 14C concentrations. The sink is of large enough magnitude that its effect on projections of future CO2 levels should not be ignored. However, the cause and mechanism of this sink are not well understood, contributing to uncertainty of projections. The estimated magnitude of the biospheric sink is examined with the aid of a global carbon-cycle model. For CO2 emissions scenarios, model estimates are made of the resulting atmospheric CO2 concentration. Next, the response of this model to CO2-emission impulses is broken down to give the fractions of the impulse which reside in the atmosphere, oceans, and terrestrial biosphere - all as a perturbation to background atmospheric CO2 concentration time-profiles that correspond to different emission scenarios. For a biospheric sink driven by the CO2-fertilization effect, we find that the biospheric fraction reaches a maximum of roughly 30% about 50 years after the impulse, which is of the same size as the oceanic fraction at that time. The dependence of these results on emission scenario and the year of the impulse are reported.  相似文献   
287.
The extensive Gangetic alluvial plains are drained by rivers which differ strongly in terms of hydrological and sediment transport characteristics. These differences are manifested in the geomorphic diversity of the plains. The Western Gangetic Plains (WGP) are marked by a degradational topography with incised channels and extensive badland development in some parts, while the Eastern Gangetic Plains (EGP) are characterized by shallow, aggrading channels with frequent avulsions and extensive flooding. We interpret such geomorphic diversity in terms of differences in stream power and sediment supply from the catchment areas. The rivers draining the western plains are marked by higher stream power and lower sediment yield that result in degradation. In comparison, the rivers draining the eastern Gangetic Plains have lower stream power and higher sediment yield that result in aggradation. The variation of stream power, a function of channel slope and high sediment yield, is attributed to differences in rainfall and rate of uplift in the hinterland. It is suggested that such differences have resulted in a marked geomorphic diversity across the plains. It is also suggested that such diversity has existed for a fairly long time because of climatic and tectonic variance.  相似文献   
288.
A depth-averaged numerical model has been developed to study tidal circulation and suspended sediment transport in the Gulf of Kachchh including Kandla creek, west coast of India. The resolution of the model is taken as 750 m × 750 m, which is found to be adequate for the gulf region. However, this resolution could not produce the realistic circulation pattern and suspended sediment concentration in the Kandla creek region. There is a major seaport at Kandla which serves as the sea gate to northwest India. Therefore, a 2-D fine resolution (75 m × 75 m) model for Kandla creek has been developed and coupled with the coarser gulf model to compute the flow features in the creek region. The model dynamics and basic formulation remain the same for both the gulf model and the creek model. The models are barotropic, based on shallow water equations, and neglect horizontal diffusion and wind stress terms in the momentum equations. The models are fully nonlinear and use a semiexplicit finite difference scheme to solve mass, momentum, and advection-diffusion equations in a horizontal plane. The tide in the gulf is represented in the model by the semidiurnal M2 constituent mainly. In this study, no fresh water discharge conditions have been considered so the results are appropriate for the dry season. Numerical experiments are carried out to study the circulation and suspended sediment concentrations in the gulf and the creek regions. The computed results are validated with the available observations.  相似文献   
289.
Temporal and spectral characteristics of X-ray emission from 60 flares of intensity ≥C class observed by the Solar X-ray Spectrometer(SOXS) during 2003–2011 are presented. We analyze the X-ray emission observed in four and three energy bands by the Si and Cadmium-Zinc-Telluride(CZT)detectors, respectively. The number of peaks in the intensity profile of the flares varies between 1 and 3. We find moderate correlation(R ≈0.2) between the rise time and the peak flux of the first peak of the flare irrespective of energy band, which is indicative of its energy-independent nature. Moreover, the magnetic field complexity of the flaring region is found to be highly anti-correlated(R = 0.61) with the rise time of the flares while positively correlated(R = 0.28) with the peak flux of the flare. The time delay between the peak of the X-ray emission in a given energy band and that in 25–30 keV decreases with increasing energy, suggesting conduction cooling is dominant in the lower energies. Analysis of 340 spectra from 14 flares reveals that the peak of differential emission measure(DEM) evolution is delayed by 60–360 s relative to that of the temperature, and this time delay is inversely proportional to the peak flux of the flare. We conclude that temporal and intensity characteristics of flares are dependent on energy as well as the magnetic field configuration of the active region.  相似文献   
290.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号