首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   332篇
  免费   4篇
  国内免费   2篇
测绘学   33篇
大气科学   31篇
地球物理   43篇
地质学   88篇
海洋学   19篇
天文学   114篇
自然地理   10篇
  2022年   3篇
  2021年   7篇
  2020年   3篇
  2019年   5篇
  2018年   15篇
  2017年   8篇
  2016年   14篇
  2015年   9篇
  2014年   13篇
  2013年   22篇
  2012年   14篇
  2011年   18篇
  2010年   13篇
  2009年   12篇
  2008年   16篇
  2007年   16篇
  2006年   19篇
  2005年   13篇
  2004年   8篇
  2003年   11篇
  2002年   8篇
  2001年   5篇
  2000年   9篇
  1999年   3篇
  1998年   8篇
  1997年   6篇
  1996年   4篇
  1995年   4篇
  1994年   5篇
  1993年   4篇
  1992年   2篇
  1991年   5篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有338条查询结果,搜索用时 15 毫秒
261.
The chemical quality of groundwater of western Haryana, India was assessed for its suitability for drinking purposes. A total of 275 water samples were collected from deep aquifer based hand-pumps situated in 37 different villages/towns of Bhiwani region. The water samples were analyzed for different physico-chemical properties, e.g., pH, total dissolved solids (TDS), total harness (TH), total alkalinity (TA), calcium, magnesium, carbonate, bicarbonate, sulphate, chloride and fluoride concentrations. In this study, the average TDS content was greater ranging 1,692 (Bhiwani block) to 2,560 mg l−1 (Siwani block), and other important parameters of water, e.g., TA (442–1,232 mg l−1), TH (437–864 mg l−1) and bicarbonate (554–672 mg l−1), were also higher than maximum permissible limit by WHO or BIS. The fluoride appeared as a major problem of safe drinking water in this region. We recorded greater fluoride concentration, i.e., 86.0 mg l−1 from Motipura village that is highest fluoride level ever recorded for Haryana state. The average fluoride concentration ranged between 7.1 and 0.8 mg l−1 in different blocks of western Haryana. On the basis of fluoride concentration, Siwani block showed the maximum number of water samples (84% of total collected samples) unsuitable for drinking purposes (containing fluoride >1.5 mg l−1) followed by Charki Dadri block (58%), Bhiwani block (52%), Bawani Khera block (33%) and Loharu block (14%). This study clearly suggest that some health deteriorating chemicals in drinking water were at dangerous level and; therefore, water quality could be a major health threat for local residents of western Haryana. The high fluoride level in drinking water has posed some serious dental health risks in local residents.  相似文献   
262.
Samples of rain water were collected during monsoon season (June to September) of 2006 and 2007 at Hudegadde, a rural site located in an ecological sensitive area of Western Ghats. The collected samples were analyzed for pH, conductivity and major ions. At this site, rainwater pH varied from 4.20 to 7.39 with 5.65 as volume weighed mean. The observed mean was slightly lower than the average pH reported at most of the Indian continental sites. Monthly variation showed that average pH of rain water was the lowest during September (end of monsoon) and the highest during July (peak of monsoon). Overall, marine sources had dominating influence at this site. However, significant influence of anthropogenic and crustal sources from local as well as inter-continental regions was also noticed. As compared to NO3, higher concentration of SO42− was noticed which might be due to contribution from industrial activities responsible for SO2 emission. At this site, influence of five types of airmass trajectories was noticed i.e. i) C.I.O. (Central part of Indian Ocean)-when air masses blown from Maldives and nearby region of central Indian ocean. These airmasses had higher concentrations of nss Ca2+ which did not show any adverse impact on the pH; ii) N.W.I.O.(North-West Indian Ocean)-when airmasses travelled from oceanic region close to north-east Africa. These airmassses had higher concentrations of nss sulphate and nitrate and gave rise to acid rain; iii) S.W.I.O. (South -West Indian Ocean)- when airmasses came from southern part of Indian ocean (close to Mauritius). During these airmasses, rain water samples had almost equal ratio of nss SO42− and nss Ca2+ similar to N.W.I.O but very low NO3 ; iv) Gulf-when airmasses were observed coming from Gulf region. Although these airmasses contributed only 2% of the total number of samples but carried high amount of nss SO42− which gave rise to acid rain. The second lowest pH was observed during these airmasses which might be due to very high nssSO42−/nssCa2+ ratios; v) N.W.I.O. + S.W.I.C. (North-West Indian Ocean+South-West Indian Continental)- when airmasses originated from north-west Indian Ocean travelling towards south continental part of India and then arriving to the site. During these airmasses, samples showed typical influence of urban activities having high concentrations of nss SO42− and NO3 leading to the lowest pH of rain water.  相似文献   
263.
Seven year data of hourly surface ozone concentration is analyzed to study diurnal cycle, trends, excess of ozone levels above threshold value and cumulative ozone exposure indices at a tropical megacity, Delhi. The ozone levels clearly exhibit a diurnal cycle, similar to what has been found in other urban places. A sharp increase in the ozone levels during forenoon and a sharp decrease in the early afternoon can be observed. The average rate of increase in ozone concentration between 09 and 12 h has been observed to be 7.1 ppb h−1. We find that the daily maximum and daytime 8-h (10–17 h) ozone levels are increasing at a rate of about 1.7 (± 0.7) and 1.3 (± 0.56) ppb y−1, respectively. The directives on ozone pollution in ambient air provided by United Nations Economic Commission for Europe and World Health Organization for vegetation (AOT40) and human health protection were used to assess the air quality. The present surface ozone levels in the city are high enough to exceed “Critical Levels” which are considered to be safe for human health, vegetation and forest. The human health threshold was exceeded for up to ~45 days per year. The AOT40 (Accumulated exposure Over a Threshold of 40 ppb) threshold was exceeded significantly during winter (D-J-F) and pre-monsoon (M-A-M) (Rabi crop growing season) season in India. Translating AOT40 exceedances during pre-monsoon into relative yield loss we estimate yield loss of 22.7%, 22.5%, 16.3% and 5.5% for wheat, cotton, soybean and rice, respectively.  相似文献   
264.
Groundwater monitoring to measure a variety of indicator parameters including dissolved gas concentrations, total dissolved gas pressure (TDGP), and redox indicators is commonly used to evaluate the impacts of gas migration (GM) from energy development in shallow aquifer systems. However, these parameters can be challenging to interpret due to complex free-phase gas source architecture, multicomponent partitioning, and biogeochemical reactions. A series of numerical simulations using a gas flow model and a reactive transport model were conducted to delineate the anticipated evolution of indicator parameters following GM in an aquifer under a variety of physical and biogeochemical conditions. The simulations illustrate how multicomponent mass transfer processes and biogeochemical reactions create unexpected spatial and temporal variations in several analytes. The results indicate that care must be taken when interpreting measured indicator parameters including dissolved hydrocarbon concentrations and TDGP, as the presence of dissolved gases in background groundwater and biogeochemical processes can cause potentially misleading conclusions about the impact of GM. Based on the consideration of multicomponent gas partitioning in this study, it is suggested that dissolved background gases such as N2 and Ar can provide valuable insights on the presence, longevity and fate of free-phase natural gas in aquifer systems. Overall, these results contribute to developing a better understanding of indicators for GM in groundwater, which will aid the planning of future monitoring networks and subsequent data interpretation.  相似文献   
265.
A regional mesoscale multi-level primitive equation model is used to predict the landfall and structure of a tropical cyclone. Three areas of model sensitivity are addressed in this paper; (1) the horizontal resolution, which includes the representation of orography; (2) the impact of an improved representation of the distribution of land surface soil moisture on the landfall problem; and (3) the sensitivity of the storm to lateral boundary conditions. A diagnostic part of this study describes a statistical regression approach to determining a ground wetness parameterization from moisture budget computations to derive estimates of surface fluxes, which are used to determine the parameterization. The model sensitivity analysis compares several versions of ground wetness parameterization. The experiment where perfect (i.e., based on analysis of observations) boundary conditions are used is defined as a bench-mark. At the highest horizontal resolution (=50km) using the ground wetness obtained from the regression, the best results were found for the structure and motion of the tropical cyclone. When the boundary conditions from a global model are used at a resolution T106 (roughly 100 km resolution for the transformed grid), the results degrade somewhat. The rain bands are predicted, but do not contain the same detail. Several other sensitivity experiments illustrate the degree of degradation of rain bands, precipitation distribution, hurricane structure, and phase speed errors as the lateral boundaries, resolution, and ground wetness parameterization are altered.  相似文献   
266.
A key question in studies of the potential for reducing uncertainty in climate change projections is how additional observations may be used to constrain models. We examine the case of ocean carbon cycle models. The reliability of ocean models in projecting oceanic CO2 uptake is fundamentally dependent on their skills in simulating ocean circulation and air–sea gas exchange. In this study we demonstrate how a model simulation of multiple tracers and utilization of a variety of observational data help us to obtain additional information about the parameterization of ocean circulation and air–sea gas exchange, relative to approaches that use only a single tracer. The benefit of using multiple tracers is based on the fact that individual tracer holds unique information with regard to ocean mixing, circulation, and air–sea gas exchange. In a previous modeling study, we have shown that the simulation of radiocarbon enables us to identify the importance of parameterizing sub-grid scale ocean mixing processes in terms of diffusive mixing along constant density surface (isopycnal mixing) and the inclusion of the effect of mesoscale eddies. In this study we show that the simulation of phosphate, a major macronutrient in the ocean, helps us to detect a weak isopycnal mixing in the upper ocean that does not show up in the radiocarbon simulation. We also show that the simulation of chlorofluorocarbons (CFCs) reveals excessive upwelling in the Southern Ocean, which is also not apparent in radiocarbon simulations. Furthermore, the updated ocean inventory data of man-made radiocarbon produced by nuclear tests (bomb 14C) enable us to recalibrate the rate of air–sea gas exchange. The progressive modifications made in the model based on the simulation of additional tracers and utilization of updated observational data overall improve the model’s ability to simulate ocean circulation and air–sea gas exchange, particularly in the Southern Ocean, and has great consequence for projected CO2 uptake. Simulated global ocean uptake of anthropogenic CO2 from pre-industrial time to the present day by both previous and updated models are within the range of observational-based estimates, but with substantial regional difference, especially in the Southern Ocean. By year 2100, the updated model estimated CO2 uptake are 531 and 133 PgC (1PgC?=?1015 gram carbon) for the global and Southern Ocean respectively, whereas the previous version model estimated values are 540 and 190 PgC.  相似文献   
267.
The Karakoram Shear Zone is a northwest-southeast trending dextral ductile shear zone, which has affected the granitic and granodioritic bodies of the southern Asian Plate margin in three distinct episodes. The ductile shearing of the granitic bodies at Tangste and Darbuk has resulted in the development of mylonites with mylonitic foliation and stretching lineation. More intense deformation is noted in the Tangste granite grading up to orthomylonite, as compared to the Darbuk granite. Kinematic indicators include S-C foliation, synthetic C′ and C″ antithetic shear bands, Type A s-mantled porphyroclasts, oblique quartz foliation, micro-shears with bookshelf gliding, mineral fishes including Group 2 mica fishes, and Type 1 and 2a pull-apart microstructures, and exhibit strong dextral sense of ductile shearing towards southeast. The textural features of the minerals, especially that of quartz and feldspar, indicate temperature of mylonitisation ranging between 300 and 500°C in the upper greenschist facies, and appear to have been evolved during exhumation as a consequence of oblique strike-slip movements along the Karakoram shear zone.  相似文献   
268.
269.
An assessment of regional vulnerability of rice to climate change in India   总被引:1,自引:0,他引:1  
A simulation analysis was carried out using the InfoCrop-rice model to quantify impacts and adaptation gains, as well as to identify vulnerable regions for irrigated and rain fed rice cultivation in future climates in India. Climates in A1b, A2, B1 and B2 emission scenarios as per a global climate model (MIROC3.2.HI) and a regional climate model (PRECIS) were considered for the study. On an aggregated scale, the mean of all emission scenarios indicate that climate change is likely to reduce irrigated rice yields by ~4 % in 2020 (2010–2039), ~7 % in 2050 (2040–2069), and by ~10 % in 2080 (2070–2099) climate scenarios. On the other hand, rainfed rice yields in India are likely to be reduced by ~6 % in the 2020 scenario, but in the 2050 and 2080 scenarios they are projected to decrease only marginally (<2.5 %). However, spatial variations exist for the magnitude of the impact, with some regions likely to be affected more than others. Adaptation strategies comprising agronomical management can offset negative impacts in the near future—particularly in rainfed conditions—but in the longer run, developing suitable varieties coupled with improved and efficient crop husbandry will become essential. For irrigated rice crop, genotypic and agronomic improvements will become crucial; while for rainfed conditions, improved management and additional fertilizers will be needed. Basically climate change is likely to exhibit three types of impacts on rice crop: i) regions that are adversely affected by climate change can gain in net productivity with adaptation; ii) regions that are adversely affected will still remain vulnerable despite adaptation gains; and iii) rainfed regions (with currently low rainfall) that are likely to gain due to increase in rainfall can further benefit by adaptation. Regions falling in the vulnerable category even after suggested adaptation to climate change will require more intensive, specific and innovative adaptation options. The present analysis indicates the possibility of substantial improvement in yields with efficient utilization of inputs and adoption of improved varieties.  相似文献   
270.
The simulation of precipitation in a general circulation model relying on relaxed mass flux cumulus parameterization scheme is sensitive to cloud adjustment time scale (CATS). In this study, the frequency of the dominant intra-seasonal mode and interannual variability of Indian summer monsoon rainfall (ISMR) simulated by an atmospheric general circulation model is shown to be sensitive to the CATS. It has been shown that a longer CATS of about 5 h simulates the spatial distribution of the ISMR better. El Niño Southern Oscillation–ISMR relationship is also sensitive to CATS. The equatorial Indian Ocean rainfall and ISMR coupling is sensitive to CATS. Our study suggests that a careful choice of CATS is necessary for adequate simulation of spatial pattern as well as interannual variation of Indian summer monsoon precipitation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号