首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28926篇
  免费   509篇
  国内免费   322篇
测绘学   714篇
大气科学   2226篇
地球物理   6171篇
地质学   10249篇
海洋学   2329篇
天文学   5991篇
综合类   54篇
自然地理   2023篇
  2020年   194篇
  2019年   205篇
  2018年   376篇
  2017年   371篇
  2016年   525篇
  2015年   409篇
  2014年   560篇
  2013年   1363篇
  2012年   633篇
  2011年   959篇
  2010年   803篇
  2009年   1114篇
  2008年   1021篇
  2007年   971篇
  2006年   980篇
  2005年   851篇
  2004年   873篇
  2003年   803篇
  2002年   808篇
  2001年   659篇
  2000年   670篇
  1999年   637篇
  1998年   603篇
  1997年   616篇
  1996年   514篇
  1995年   505篇
  1994年   473篇
  1993年   448篇
  1992年   412篇
  1991年   369篇
  1990年   406篇
  1989年   332篇
  1988年   375篇
  1987年   418篇
  1986年   350篇
  1985年   523篇
  1984年   560篇
  1983年   554篇
  1982年   452篇
  1981年   449篇
  1980年   465篇
  1979年   404篇
  1978年   415篇
  1977年   371篇
  1976年   397篇
  1975年   357篇
  1974年   406篇
  1973年   392篇
  1972年   246篇
  1971年   202篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
251.
When subjected to major earthquakes, core-stiffened buildings may begin to tip. That is, the overturning moment on the core's footing becomes so large that the footing breaks contact with the ground and begins to rock. A method is described for including the effects of tipping in the analysis of multistorey core-braced structures. Curves are presented which summarize the maximum response to both pulse and earthquake excitations; these data are elucidated via a typical design example. By comparison to fixed-base behaviour, tipping greatly reduces the base shear and moment. This makes possible a more economical design. However, attention must be devoted to avoiding potential soil-mechanics problems associated with the wobbling behaviour of the tipping core.  相似文献   
252.
Spherical aggregates of orthopyroxene are reported from some parts of the Bushveld Complex in a variety of host rocks.Detailed mapping has shown that these spherical aggregates, comprising pyroxenite spheroids in a quartz-norite matrix, are contact phenomena and not stratigraphic markers. Orthopyroxene, biotite and amphibole are enriched in spheroids relative to matrix; their mineral chemistry showing a fairly constant orthopyroxene and plagioclase composition through the spheroids and into the matrix, indicating in-situ formation.Bulk chemistry shows spheroid to matrix tie-lines orthogonal to those generally accepted for silicate liquid immiscibility, but other chemical information is consistent with the occurrence of immiscibility.The formation of the aggregates may be related to the industrial process of spherical agglomeration, by which spheroids are formed by the introduction of an immiscible “bridging liquid” to the melt — probably derived from the floor rocks in this case. The mechanism accounts for the field relationships, petrography and chemistry of the aggregate-matrix system. The petrology of the process equates with a special case of silicate liquid immiscibility induced by local contamination and ageing of the original magma.A similar “bridging liquid” mechanism could also account for the formation of the so-called “boulder bed” beneath the Merensky Reef.  相似文献   
253.
Examples show that the sampling operation–i.e., the change from the continuous time domain to the discrete time domain–does not necessarily preserve the minimum-phase property. Further examples can be constructed to show that the resampling operation on the discrete time domain does not necessarily preserve the minimum-phase property. Finally it can be shown that the minimum-phase property can be either created or destroyed by sampling or resampling.  相似文献   
254.
It is shown that the so-called Kirchhoff-summation operator is of a very wide-band nature and even contains an evanescent part. As a consequence, discretization may cause serious aliasing errors, particularly for small extrapolation steps. It is proposed to use in all practical cases band-limited versions of the summation operator, the spatial cut-off frequency being determined by the spatial Fourier spectrum of the coherent noise.  相似文献   
255.
256.
257.
Cerro Pinto is a Pleistocene rhyolite tuff ring-dome complex located in the eastern Trans-Mexican Volcanic Belt. The complex is composed of four tuff rings and four domes that were emplaced in three eruptive stages marked by changes in vent location and eruptive character. During Stage I, vent clearing produced a 1.5-km-diameter tuff ring that was then followed by emplacement of two domes of approximately 0.2 km3 each. With no apparent hiatus in activity, Stage II began with the explosive formation of a tuff ring ~2 km in diameter adjacent to and north of the earlier ring. Subsequent Stage II eruptions produced two smaller tuff rings within the northern tuff ring as well as a small dome that was mostly destroyed by explosions during its growth. Stage III involved the emplacement of a 0.04 km3 dome within the southern tuff ring. Cerro Pinto’s eruptive history includes sequences that follow simple rhyolite-dome models, in which a pyroclastic phase is followed immediately by effusive dome emplacement. Some aspects of the eruption, however, such as the explosive reactivation of the system and explosive dome destruction, are more complex. These events are commonly associated with polygenetic structures, such as stratovolcanoes or calderas, in which multiple pulses of magma initiate reactivation. A comparison of major and trace element geochemistry with nearby Pleistocene silicic centers does not show indication of any co-genetic relationship, suggesting that Cerro Pinto was produced by a small, isolated magma chamber. The compositional variation of the erupted material at Cerro Pinto is minimal, suggesting that there were not multiple pulses of magma responsible for the complex behavior of the volcano and that the volcanic system was formed in a short time period. The variety of eruptive style observed at Cerro Pinto reflects the influence of quickly exhaustible water sources on a short-lived eruption. The rising magma encountered small amounts of groundwater that initiated eruption phases. Once a critical magma:water ratio was exceeded, the eruptions became dry and sub-plinian to plinian. The primary characteristic of Cerro Pinto is the predominance of fall deposits, suggesting that the level at which rising magma encountered water was deep enough to allow substantial fragmentation after the water source was exhausted. Isolated rhyolite domes are rare and are not currently viewed as prominent volcanic hazards, but the evolution of Cerro Pinto demonstrates that individual domes may have complex cycles, and such complexity must be taken into account when making hazard risk assessments.  相似文献   
258.
Mt. Nyiragongo is one of the most dangerous volcanoes in the world for the risk associated with the propagation of lava flows. In 2002 several vents opened along a huge system of fractures, pouring out lava which reached and destroyed a considerable part of Goma, a town of about 500,000 inhabitants on the shore of Lake Kivu. In a companion paper (Favalli et al. in Bull Volcanol, this issue, 2008) we employed numerical simulations of probable lava flow paths to evaluate the lava flow hazard on the flanks of the volcano, including the neighbouring towns of Goma (DRC) and Gisenyi (Rwanda). In this paper we use numerical simulations to investigate the possibility of significantly reducing the lava flow hazard in the city through the construction of protective barriers. These barriers are added to the DEM of the area as additional morphological elements, and their effect is evaluated by repeating numerical simulations with and without the presence of barriers. A parametric study on barrier location, size, shape and orientation led to the identification of barriers which maximize protection while minimizing their impact. This study shows that the highest hazard area corresponding to eastern Goma, which was largely destroyed by lava flows in 2002, cannot be effectively protected from future lava flows towards Lake Kivu and should be abandoned. On the contrary, the rest of the town can be sheltered from lava flows by means of two barriers that deviate or contain the lava within the East Goma sector. A proposal for the future development of the town is formulated, whereby “new” Goma is completely safe from the arrival of lava flows originating from vents outside its boundaries. The proposal minimizes the risk of further destruction in town due to future lava flows.  相似文献   
259.
 Samples of basalt were collected during the Rapid Response cruise to Loihi seamount from a breccia that was probably created by the July to August 1996 Loihi earthquake swarm, the largest swarm ever recorded from a Hawaiian volcano. 210Po–210Pb dating of two fresh lava blocks from this breccia indicates that they were erupted during the first half of 1996, making this the first documented historical eruption of Loihi. Sonobuoys deployed during the August 1996 cruise recorded popping noises north of the breccia site, indicating that the eruption may have been continuing during the swarm. All of the breccia lava fragments are tholeiitic, like the vast majority of Loihi's most recent lavas. Reverse zoning at the rim of clinopyroxene phenocrysts, and the presence of two chemically distinct olivine phenocryst populations, indicate that the magma for the lavas was mixed just prior to eruption. The trace element geochemistry of these lavas indicates there has been a reversal in Loihi's temporal geochemical trend. Although the new Loihi lavas are similar isotopically and geochemically to recent Kilauea lavas and the mantle conduits for these two volcanoes appear to converge at depth, distinct trace element ratios for their recent lavas preclude common parental magmas for these two active volcanoes. The mineralogy of Loihi's recent tholeiitic lavas signify that they crystallized at moderate depths (∼8–9 km) within the volcano, which is approximately 1 km below the hypocenters for earthquakes from the 1996 swarm. Taken together, the petrological and seismic evidence indicates that Loihi's current magma chamber is considerably deeper than the shallow magma chamber (∼3–4 km) in the adjoining active shield volcanoes. Received: 21 August 1997 / Accepted: 15 February 1998  相似文献   
260.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号