首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   4篇
  国内免费   3篇
测绘学   13篇
大气科学   8篇
地球物理   17篇
地质学   89篇
天文学   24篇
综合类   2篇
自然地理   1篇
  2022年   7篇
  2021年   1篇
  2020年   6篇
  2019年   2篇
  2018年   16篇
  2017年   11篇
  2016年   15篇
  2015年   9篇
  2014年   11篇
  2013年   7篇
  2012年   12篇
  2011年   5篇
  2010年   7篇
  2009年   8篇
  2008年   11篇
  2007年   3篇
  2006年   6篇
  2005年   6篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1996年   2篇
排序方式: 共有154条查询结果,搜索用时 46 毫秒
151.
Digital Elevation Model (DEM) is one of the important parameters for soil erosion assessment. Notable uncertainties are observed in this study while using three high resolution open source DEMs. The Revised Universal Soil Loss Equation (RUSLE) model has been applied to analysis the assessment of soil erosion uncertainty using open source DEMs (SRTM, ASTER and CARTOSAT) and their increasing grid space (pixel size) from the actual. The study area is a part of the Narmada river basin in Madhya Pradesh state, which is located in the central part of India and the area covered 20,558 km2. The actual resolution of DEMs is 30 m and their increasing grid spaces are taken as 90, 150, 210, 270 and 330 m for this study. Vertical accuracy of DEMs has been assessed using actual heights of the sample points that have been taken considering planimetric survey based map (toposheet). Elevations of DEMs are converted to the same vertical datum from WGS 84 to MSL (Mean Sea Level), before the accuracy assessment and modelling. Results indicate that the accuracy of the SRTM DEM with the RMSE of 13.31, 14.51, and 18.19 m in 30, 150 and 330 m resolution respectively, is better than the ASTER and the CARTOSAT DEMs. When the grid space of the DEMs increases, the accuracy of the elevation and calculated soil erosion decreases. This study presents a potential uncertainty introduced by open source high resolution DEMs in the accuracy of the soil erosion assessment models. The research provides an analysis of errors in selecting DEMs using the original and increased grid space for soil erosion modelling.  相似文献   
152.
The occurrence of dental/skeletal fluorosis among the people in the study area provided the motivation to assess the distribution, severity and impact of fluoride contamination in groundwater of Bankura district at Simlapal block, West Bengal, India. To meet the desired objective, groundwater samples were collected from different locations of Laxmisagar, Machatora and Kusumkanali regions of Simlapal block at different depths of tube wells in both pre- and post-monsoon seasons. Geochemical results reveal that the groundwaters are mostly moderate- to hard-water type. Of total groundwater samples, 37% are situated mainly in relatively higher elevated region containing fluoride above 1.5 mg/L, indicating that host aquifers are severely affected by fluoride contamination. Machatora region is highly affected by fluoride contamination with maximum elevated concentration of 12.2 mg/L. Several symptoms of fluorosis among the different age-groups of people in Laxmisagar and Machatora areas are indicating consumption of fluoridated water for prolonged period. The groundwater samples were mainly Na–Ca–HCO3 type and rock dominance indicating the dissolution of minerals taking place. Ion exchange between OH? ion and F? ion present in fluoride-bearing mineral is the most dominant mechanism of fluoride leaching. High concentration of Na+ and HCO3 ? increases the alkalinity of the water, providing a favorable condition for fluoride to leach into groundwater from its host rocks and minerals.  相似文献   
153.
The zeolite minerals characterized with hydrated aluminosilicates, negative ionic charge and 3D framework structure are well known for purifying the groundwater occurring in basaltic aquifer systems. However, the filtering mechanism at in situ field conditions is a complex process, which is rarely studied, and hence, it needs to be demonstrated. This paper explores the mechanism of hydrochemical processes and evolution of natural zeolites associated with basaltic rock to enhance groundwater quality. We present the hydrochemical findings and evolution processes derived from 46 groundwater samples (Nt = 46) belong to zeolitic (Nz = 25) and non-zeolitic (Nnz = 21) zones of a micro-watershed (4.4 km2) beset over basaltic terrain, Deccan Volcanic Province (DVP), India. The groundwater samples collected for one hydrological cycle (pre- and post-monsoons) are examined for major ion chemistry to determine the aqueous solution mechanism and ion-exchange process occurred in zeolitic and non-zeolitic zones. Further, the hydrochemical parameters are appraised by means of dominancy of ions, rock–water interactions, silicate weathering, chloro-alkaline indices, cation-exchange bivariate plots and the mechanism controlling groundwater chemistry. The results show that: 1) the purifying efficiency of zeolites for total ionic strength is observed as 63.85 and 68.58% during pre- and post-monsoons, respectively, 2) the significant reduction (36.51%) in total hardness attributed to the positive trend of chloro-alkaline indices depicting the ion-exchange phenomenon between Na+ and K+ (alkalies) and Ca2+ and Mg2+ (alkali-earth) elements in the zeolitic zone, 3) Gibbs plot shows the rock–water interaction as the predominant mechanism controlling groundwater chemistry in the zeolitic zone, and 4) the groundwater quality parameters from zeolitic zone are found within the permissible limit of WHO drinking water standards.  相似文献   
154.
In the present investigation, 37 numbers of high sulphur tertiary coal samples from Meghalaya, India have been studied on the basis of proximate and ash analysis. Various statistical tools like Bivariant Analysis, Principal Component Analysis (PCA) and Hierarchical Clustering Analysis (HCA), and also the geochemical indicators were applied to determine the dominant detrital or authigenic affinity of the ash forming elements in these coals. The genetic interpretation of coal as well as the coal ash has been carried out based on chemical compositions of high temperature ash (HTA) by using Detrital/Authigenic Index. X-Ray Diffraction (XRD) analysis was also carried out to study the mineralogy of the studied coal ashes. Both statistical tools and geochemical indicators have confirmed the detrital nature of these coals as well as the ash forming elements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号