首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   14篇
  国内免费   1篇
测绘学   5篇
大气科学   4篇
地球物理   42篇
地质学   79篇
海洋学   16篇
天文学   27篇
自然地理   12篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   5篇
  2018年   9篇
  2017年   9篇
  2016年   8篇
  2015年   10篇
  2014年   13篇
  2013年   18篇
  2012年   16篇
  2011年   7篇
  2010年   11篇
  2009年   8篇
  2008年   15篇
  2007年   6篇
  2006年   2篇
  2005年   8篇
  2004年   8篇
  2003年   1篇
  2002年   4篇
  2001年   3篇
  2000年   5篇
  1999年   3篇
  1998年   1篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有185条查询结果,搜索用时 16 毫秒
91.
Résumé

La méthode SHYREG est une approche développée pour la connaissance régionale de l’aléa pluvial (SHYREG pluie) et hydrologique (SHYREG débit) en tout point du territoire français. Elle est basée sur le couplage d’un générateur stochastique de pluie horaire et d’un modèle hydrologique. Cet article présente les résultats de la mise en ?uvre de la méthode sur 1605 bassins versants répartis sur la France métropolitaine. Sur les fréquences courantes (c.à.d. périodes de retour inférieures à 10 ans), la méthode restitue correctement les quantiles de débit de crue ajustés à une loi statistique sur les observations (loi GEV, selon le critère de Nash-Sutcliffe). Plusieurs critères sont utilisés pour valider l’extrapolation des débits à des fréquences extrêmes: (a) en la confrontant à de longues chroniques de débits observés, (b) en analysant dans le modèle hydrologique la saturation du réservoir de production synonyme de comportement asymptotique avec les pluies, et (c) en étudiant la stabilité de la méthode à travers les critères statistiques.
Editeur Z.W. Kundzewicz; Editeur associé G. Mahé

Citation Aubert, Y., Arnaud, P., Ribstein, P., et Fine, J.-A., 2014. La méthode SHYREG débit, application sur 1605 bassins versants en France Métropolitaine. Hydrological Sciences Journal, 59 (5), 993–1005.  相似文献   
92.
Semi‐arid ecosystems are often spatially self‐organized in typical patterns of vegetation bands with high plant cover interspersed with bare soil areas, also known as ‘tiger bush’. In modelling studies, most often, straight planar slopes were used to analyse vegetation patterning. The effect of slope steepness has been investigated widely, and some studies investigated the effects of microtopography and hillslope orientation. However, at the larger catchment scale, the overall form of the landscape may affect vegetation patterning and these more complex landscapes are much more prevalent than straight slopes. Hence, our objective was to determine the effect of landform variation on vegetation patterning and sediment dynamics. We linked two well‐established models that simulate (a) plant growth, death and dispersal of vegetation, and (b) erosion and sedimentation dynamics. The model was tested on a straight planar hillslope and then applied to (i) a set of simple synthetic topographies with varying curvature and (ii) three more complex, real‐world landscapes of distinct morphology. Results show banded vegetation patterning on all synthetic topographies, always perpendicular to the slope gradient. Interestingly, we also found that movement of bands – a debated phenomenon – seems to be dependent on curvature. Vegetation banding was simulated on the slopes of the alluvial fan and along the valley slopes of the dissected and rolling landscapes. In all landscapes, local valleys developed a full vegetation cover induced by water concentration, which is consistent with observations worldwide. Finally, banded vegetation patterns were found to reduce erosion significantly as compared to other vegetation configurations. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
93.
The 8-km2 Morcille catchment, which is a sub-catchment of the 150-km2 Ardières catchment in the Beaujolais region of France, is one of the first sites in Europe where research has been conducted on surface water contamination by pesticides. A consolidated hydrological and chemical dataset has been set up with data collected since 2002 on the Morcille River and since 2011 on the Ardières River. Additional data on the ecotoxicological and ecological impacts of pesticides on aquatic microbial communities and macroinvertebrates has also been recorded in both rivers since 2005. The ‘Site Atelier Ardières-Morcille Dataset’ described here combines rainfall and stream water height measurements at gauged stations with concentrations of two trace elements and nine pesticides (mainly herbicides, fungicides and some of their metabolites) in both the Ardières and Morcille rivers. All contaminant concentration data showed spatial and temporal variability in water quality associated with pesticide use and rainfall patterns. This long-term monitoring framework made it possible to estimate the persistence of two herbicides (diuron and norflurazon) after legislation banning them. It took 4 years for diuron and more than 10 years for norflurazon concentrations to fall below 0.1 μg/L. Concurrent biological data showed a gradient of impacts consistent with chemical anthropogenic pressure, and rapid recovery of phototrophic microbial communities after the diuron ban. Finally, monitoring data on pesticide transport in a grassed strip set on a slope of the Morcille catchment confirmed that vegetative filter strips can effectively reduce diuron fluxes in surface runoff (>80% abatement) and infiltration water (>70% abatement). The full dataset offers a valuable resource for the validation of hydrological models and the development of global approaches to better understand the pressure–transport–exposure–impact chain and aquatic community resilience at the small catchment scale.  相似文献   
94.
The climates of the mid-Holocene (MH), 6,000 years ago, and of the Last Glacial Maximum (LGM), 21,000 years ago, have extensively been simulated, in particular in the framework of the Palaeoclimate Modelling Intercomparion Project. These periods are well documented by paleo-records, which can be used for evaluating model results for climates different from the present one. Here, we present new simulations of the MH and the LGM climates obtained with the IPSL_CM5A model and compare them to our previous results obtained with the IPSL_CM4 model. Compared to IPSL_CM4, IPSL_CM5A includes two new features: the interactive representation of the plant phenology and marine biogeochemistry. But one of the most important differences between these models is the latitudinal resolution and vertical domain of their atmospheric component, which have been improved in IPSL_CM5A and results in a better representation of the mid-latitude jet-streams. The Asian monsoon’s representation is also substantially improved. The global average mean annual temperature simulated for the pre-industrial (PI) period is colder in IPSL_CM5A than in IPSL_CM4 but their climate sensitivity to a CO2 doubling is similar. Here we show that these differences in the simulated PI climate have an impact on the simulated MH and LGM climatic anomalies. The larger cooling response to LGM boundary conditions in IPSL_CM5A appears to be mainly due to differences between the PMIP3 and PMIP2 boundary conditions, as shown by a short wave radiative forcing/feedback analysis based on a simplified perturbation method. It is found that the sensitivity computed from the LGM climate is lower than that computed from 2 × CO2 simulations, confirming previous studies based on different models. For the MH, the Asian monsoon, stronger in the IPSL_CM5A PI simulation, is also more sensitive to the insolation changes. The African monsoon is also further amplified in IPSL_CM5A due to the impact of the interactive phenology. Finally the changes in variability for both models and for MH and LGM are presented taking the example of the El-Niño Southern Oscillation (ENSO), which is very different in the PI simulations. ENSO variability is damped in both model versions at the MH, whereas inconsistent responses are found between the two versions for the LGM. Part 2 of this paper examines whether these differences between IPSL_CM4 and IPSL_CM5A can be distinguished when comparing those results to palaeo-climatic reconstructions and investigates new approaches for model-data comparisons made possible by the inclusion of new components in IPSL_CM5A.  相似文献   
95.
The diversity of bacterial communities exposed to radioactive contamination in Chernobyl soils was examined by a combination of molecular and culture-based approaches. A set of six radioactive soil samples, exhibiting high levels of 137Cs contamination, were collected from the T22 trench. Three samples were also collected in nearby soils with low contamination. Complex bacterial community structures were observed in both highly and weakly contaminated samples, using a molecular approach targeting the 16S rRNA gene. However, the presence of specific populations within samples from highly contaminated soils could not be revealed by statistical analysis of the DGGE profiles. More than 200 culturable isolates, representative of dominant morphotypes, were grouped into 83 Operational Taxonomic Units (OTUs) and affiliated to Firmicutes, Actinobacteria, Alpha-, Beta-, Gamma-Proteobacteria and Bacteroïdetes. No specific pattern linked to contamination was observed for these culturable bacteria. The results show that both highly and weakly contaminated soils host a wide diversity of bacteria, suggesting that long term exposure to radionuclides does not lead to the extinction of bacterial diversity.  相似文献   
96.
Polar ice cores are unique climate archives. Indeed, most of them have a continuous stratigraphy and present high temporal resolution of many climate variables in a single archive. While water isotopic records (δD or δ18O) in ice cores are often taken as references for past atmospheric temperature variations, their relationship to temperature is associated with a large uncertainty. Several reasons are invoked to explain the limitation of such an approach; in particular, post-deposition effects are important in East Antarctica because of the low accumulation rates. The strong influence of post-deposition processes highlights the need for surface polar research programs in addition to deep drilling programs. We present here new results on water isotopes from several recent surface programs, mostly over East Antarctica. Together with previously published data, the new data presented in this study have several implications for the climatic reconstructions based on ice core isotopic data: (1) The spatial relationship between surface mean temperature and mean snow isotopic composition over the first meters in depth can be explained quite straightforwardly using simple isotopic models tuned to d-excess vs. δ18O evolution in transects on the East Antarctic sector. The observed spatial slopes are significantly higher (~ 0.7–0.8‰·°C?1 for δ18O vs. temperature) than seasonal slopes inferred from precipitation data at Vostok and Dome C (0.35 to 0.46‰·°C?1). We explain these differences by changes in condensation versus surface temperature between summer and winter in the central East Antarctic plateau, where the inversion layer vanishes in summer. (2) Post-deposition effects linked to exchanges between the snow surface and the atmospheric water vapor lead to an evolution of δ18O in the surface snow, even in the absence of any precipitation event. This evolution preserves the positive correlation between the δ18O of snow and surface temperature, but is associated with a much slower δ18O-vs-temperature slope than the slope observed in the seasonal precipitation. (3) Post-deposition effects clearly limit the archiving of high-resolution (seasonal) climatic variability in the polar snow, but we suggest that sites with an accumulation rate of the order of 40 kg.m?2.yr?1 may record a seasonal cycle at shallow depths.  相似文献   
97.
In central Western Europe, several studies have shown that colder Holocene periods, such as the Little Ice Age, also correspond to wet periods. However, in mountain areas which are highly sensitive to erosion processes and where precipitation events can be localized, past evolution of hydrological activity might be more complicated. To assess these past hydrological changes, a paleolimnological approach was applied on a 13.4-m-long sediment core taken in alpine Lake Anterne (2063 m asl) and representing the last 3.5 ka. Lake sedimentation is mainly composed of flood deposits triggered by precipitation events. Sedimentological and geochemical analyses show that floods were more frequent during cold periods while high-intensity flood events occurred preferentially during warmer periods. In mild temperature conditions, both flood patterns are present. This underlines the complex relationship between flood hazards and climatic change in mountain areas. During the warmer and/or dryer times of the end of Iron Age and the Roman Period, both the frequency and intensity of floods increased. This is interpreted as an effect of human-induced clearing for grazing activities and reveals that anthropogenic interferences must be taken into account when reconstructing climatic signals from natural archives.  相似文献   
98.
Landscape evolution models (LEMs) quantitatively simulate processes of sedimentation and erosion on millennial timescales. An important aspect of human impact on erosion is sediment redistribution due to agriculture, referred to herein as tillage erosion. In this study we aim to analyse the potential contribution of tillage erosion to landscape development using LEM LAPSUS. The model is calibrated separately for a water erosion process (i) without tillage and (ii) with tillage. The model is applied to the ~250 km2 Torrealvilla case study catchment, SE Spain. We were able to simulate alternating sequences of incision and aggradation, that are important on longer (millennial) timescales. Generally, model results show that tillage erosion adds to deposition in the lower floodplain area, but neither water erosion alone nor water with tillage erosion together could exactly reproduce the observed amounts of erosion and sedimentation for the case study area. In addition, scale effects are apparent. On hillslopes, tillage may contribute importantly to erosion and may fill local depressions. If assessed on the catchment scale, sediments from tillage erosion eventually reach the lower floodplain area where they contribute to deposition. However, water erosion was observed in the model simulations to be the most important process on the catchment scale. This is the first time that tillage erosion has been explicitly included in a landscape evolution model at a millennial timescale and large catchment scale. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
99.
The environment is impacted by natural and anthropogenic disturbances that occur at different spatial and temporal scales, and that lead to major changes and even disequilibria when exceeding the resiliency capacities of the ecosystem. With an annual mean flow of 1700 m3 s−1, the Rhône River is the largest of the western Mediterranean basin. Its annual solid discharges vary between 2 and 20 Mt, with flood events responsible for more than 70% of these amounts.  相似文献   
100.
Analyses of shoreline and bathymetry change near Calais, northern coast of France, showed that shoreline evolution during the 20th century was strongly related with shoreface and nearshore bathymetry variations. Coastal erosion generally corresponds to areas of nearshore seabed lowering while shoreline progradation is essentially associated with areas of seafloor aggradation, notably east of Calais where an extensive sand flat experienced seaward shoreline displacement up to more than 300 m between 1949 and 2000. Mapping of bathymetry changes since 1911 revealed that significant variation in nearshore morphology was caused by the onshore and alongshore migration of a prominent tidal sand bank that eventually welded to the shore. Comparison of bathymetry data showed that the volume of the bank increased by about 10×107 m3 during the 20th century, indicating that the bank was acting as a sediment sink for some of the sand transiting alongshore in the coastal zone. Several lines of evidence show that the bank also represented a major sediment source for the prograding tidal flat, supplying significant amounts of sand to the accreting upper beach. Simulation of wave propagation using the SWAN wave model (Booij et al., 1999) suggests that the onshore movement of the sand bank resulted in a decrease of wave energy in the nearshore zone, leading to more dissipative conditions. Such conditions would have increased nearshore sediment supply, favoring aeolian dune development on the upper beach and shoreline progradation. Our results suggest that the onshore migration of nearshore sand banks may represent one of the most important, and possibly the primary mechanism responsible for supplying marine sand to beaches and coastal dunes in this macrotidal coastal environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号