Free vibration analysis of symmetrically laminated composite plates resting on Pasternak elastic support and coupled with an ideal, incompressible and inviscid fluid is the objective of the present work. The fluid domain is considered to be infinite in the length direction but bounded in the depth and width directions. In order to derive the eigenvalue equation, Rayleigh-Ritz method is applied for the fluid-plate-foundation system. The efficiency of the method is proved by comparison studies with those reported in the open literature. At the end, parametric studies are carried out to examine the impact of different parameters on the natural frequencies. 相似文献
The Kangan Aquifer (KA) is located below a gas reservoir in the crest of the Kangan Anticline, southwest of Iran. This aquifer is composed of Permo-Triassic limestone, dolomite, sandstone, anhydrite and shale. It is characterized by a total dissolved solid of about 332,000 mg/L and Na–Ca–Cl-type water. A previous study showed that the source of the KA waters is evaporated seawater. Chemical evolution of the KA is the main objective of this study. The major, minor and trace element concentrations of the KA waters were measured. The chemical evolution of KA waters occurred by three different processes: evaporation of seawater, water–rock and water–gas interactions. Due to the seawater evaporation process, the concentration of all ions in the KA waters increased up to saturation levels. In comparison to the evaporated seawater, the higher concentrations of Ca, Li, Sr, I, Mn and B and lower concentrations of Mg, SO4 and Na and no changes in concentrations of Cl and K ions are observed in the KA waters. Based on the chemical evolution after seawater evaporation, the KA waters are classified into four groups: (1) no evolution (Cl, K ions), (2) water–rock interaction (Na, Ca, Mg, Li and Sr ions), (3) water–gas interaction (SO4 and I ions) and (4) both water–rock and water–gas interactions (Mn and B ions). The chemical evolution processes of the KA waters include dolomitization, precipitation, ion exchange and recrystallization in water–rock interaction. Bacterial reduction and diagenesis of organic material in water–gas interaction also occur. A new type of chart, Caexcess versus Mgdeficit, is proposed to evaluate the dolomitization process. 相似文献
In order to describe diffusive transport of solutes through a porous material, estimation of effective diffusion coefficients is required. It has been shown theoretically that in the case of uncharged porous materials the effective diffusion coefficient of solutes is a function of the pore morphology of the material and can be described by the tortuosity (tensor) (Bear, 1988 [1]). Given detailed information of the pore geometry at the micro-scale the tortuosity of different materials can be accurately estimated using homogenization procedures. However, many engineering materials (e.g., clays and shales) are characterized by electrical surface charges on particles of the porous material which strongly affect the (diffusive) transport properties of ions. For these type of materials, estimation of effective diffusion coefficients have been mostly based on phenomenological equations with no link to underlying micro-scale properties of these charged materials although a few recent studies have used alternative methods to obtain the diffusion parameters (Jougnot et al., 2009; Pivonka et al., 2009; Revil and Linde, 2006 2, 3 and 4). In this paper we employ a recently proposed up-scaled Poisson–Nernst–Planck type of equation (PNP) and its micro-scale counterpart to estimate effective ion diffusion coefficients in thin charged membranes. We investigate a variety of different pore geometries together with different surface charges on particles. Here, we show that independent of the charges on particles, a (generalized) tortuosity factor can be identified as function of the pore morphology only using the new PNP model. On the other hand, all electro-static interactions of ions and charges on particles can consistently be captured by the ratio of average concentration to effective intrinsic concentration in the macroscopic PNP equations. Using this formulation allows to consistently take into account electrochemical interactions of ions and charges on particles and so excludes any ambiguity generally encountered in phenomenological equations. 相似文献
Palynological and geochemical analyses provide valuable information about modern and past climatic regimes and vegetation. The impact of climate and humans on past vegetation in the semi-arid areas of northwestern Iran has received increased interest in the wake of warming temperatures in the Middle East. Palynological and down-core XRF elemental abundances from a peat core from Lake Neor enabled a reconstruction of vegetational changes of the past 7000 years over the highlands of northwestern Iran. Periods of increased arboreal pollen (AP) types and high (Artemisia + Poaceae)/Chenopodiaceae ratios along with low titanium abundances, high percentages of total organic carbon, more negative δD values, and higher carbon accumulation rates suggest a relatively wet climate. These conditions have persisted during the periods 6700–6200, 5200–4450 and 3200–2200 cal a bp. The overall low AP values, substantial rise of Chenopodiaceae, high Ti abundances and low values of palaeo-redox proxies, are all evidences of a drier climate, as has been reconstructed for the periods 6200–5200 and 4030–3150 cal a bp and the last 2200 years. An important feature of the last centuries is the increase of anthropogenic and pastoral indicator pollen types. Our results may provide basic data to predict future trends in vegetation dynamics under future climate change in western Asia. 相似文献
As natural and man-made disasters have been increasing, interest in preventing crises and/or mitigating the associated consequences has been growing as well. When dealing with predictable disasters, there is a limited time for effective response, and people should be evacuated in a short time to minimize the fatalities. In such extraordinary situations, attention should be given to making better use of existing infrastructure. The aim of this study is to present a model for optimizing street directions in order to increase the outbound capacity of the network. However, because of the magnitude of the problem, an optimal solution cannot be reached through ordinary methods. Hence, the simulated annealing algorithm, which is a meta-heuristic technique, is used. Computational results on a case study demonstrate that this technique yields considerable improvement in the objective function of the problem which is total travel time of road network users.
The shortage of surface water in arid and semiarid regions has led to the more use of the groundwater resources. In these areas, the groundwater is essential for activities such as water supply and irrigation. One of the most important stages in sustainable yield of groundwater resources is awareness of groundwater level. In this study, we have applied artificial neural networks (ANN) and autoregressive integrated moving average (ARIMA) models for groundwater level forecasting to 4 months ahead in Shiraz basin, southwestern Iran. Time series analysis was conducted according to the Box–Jenkins method. Meanwhile, gamma and M-test were considered for determining the optimal input combination and length of training and testing data in the ANN model. The results indicated that performance of multilayer perceptron neural network (4, 14, 1) and ARIMA (2, 1, 2) is satisfactory in the groundwater level forecasting for one month ahead. The performance comparison shows that the ARIMA model performs appreciably better than the ANN. 相似文献
This paper numerically examines the bearing capacity and failure mechanism of a shallow strip foundation constructed above twin voids. The voids may refer to caves, caverns, underground aqueduct or tunnels due to water seepage, chemical reaction or deliberately excavated in soil deposit. The ability of numerical model to accurately predict the system behavior is evaluated by performing verification analyses on existing researches. Subsequently, a parametric study carried out to reveal the influence of size of footing/voids and their location (i.e. depth, spacing, eccentricity) on the bearing capacity of footing. To clarify the failure mechanism, the distribution of shear strain in the soil for different scenarios is assessed. The parametric study provided a new framework to determine the bearing capacity and the mode of failure for footings on voids. Based on the results, a criterion can be issued to avoid collapse of footing/voids regarding the shape, location and size of voids. The results can also be used to design construction of a footing on existing voids while the acquired failure mechanisms can be appointed to develop analytical solutions for this problem. Results demonstrated that a critical depth for voids and a critical distance between them exist where the influence on the ultimate bearing capacity of footing disappears. 相似文献
In watersheds that have not sufficient meteorological and hydrometric data for simulating rainfall-runoff events, using geomorphologic and geomorphoclimatic characteristics of watershed is a conventional method for the simulation. A number of rainfall-runoff models utilize these characteristics such as Nash-IUH, Clark-IUH, Geomorphologic Instantaneous Unit Hydrograph(GIUH), Geomorphoclimatic Instantaneous Unit Hydrograph(GcIUH), GIUH-based Nash(GIUH-Nash) and GcIUH-based Clark(GcIUH-Clark). But all these models are not appropriate for mountainous watersheds. Therefore, the objective of this study is to select the best of them for the simulation. The procedure of this study is: a) selecting appropriate rainfall-runoff events for calibration and validation of six hybrid models, b) distinguishing the best model based on different performance criteria(Percentage Error in Volume(PEV); Percentage Error in Peak(PEP); Percentage Error in Time to Peak(PETP); Root Mean Square Error(RMSE) and Nash-Sutcliffe model efficiency coefficient(ENS)), c) Sensitivity analysis for determination of the most effective parameter at each model, d) Uncertainty determination of different parameters in each model and confirmation of the obtained results by application of the performance criteria. For application of this procedure, the Navrood watershed in the north of Iran as a mountainous watershed has been considered. The results showed that the ClarkIUH and GcIUH-Clark are suitable models for simulation of flood hydrographs, while other models cannot simulate flood hydrographs appropriately. The sensitivity analysis shows that the most sensitive parameters are the infiltration constant rate and time of concentration in the Clark-IUH model. Also, the most sensitive parameters include the infiltration constant rate and storage coefficient in the GcIUHClark model. The Clark-IUH and GcIUH-Clark models are more sensitive to their parameters. The Latin Hypercube Sampling(LHS) on Monte Carlo(MC) simulation method was used for evaluation of uncertainty of data in rainfall-runoff models. In this method 500 sets of data values are produced and then the peak discharge of flood hydrographs for each produced data set is simulated with rainfall-runoff models. The uncertainty of data changes the value of simulated peak discharge of flood hydrograph. The uncertainty analysis shows that the observed peak discharges of different rainfall-runoff events are within the range of values of simulated by the six hybrid rainfall-runoff models and IUH that inputs of these models were the produced data sets. The range of the produced peak discharge of flood hydrographs by the Clark-IUH and GcIUH-Clark models is wider than those of other models. 相似文献