The aim of this paper is to study the REE geochemistry of the Shenzhen Bay (SZB) and Dapeng Bay(DPB) modern sediments, discuss their REE distribution patterns, reveal the REE geochemical difference between the two bays which share the same material source but are deposited in different sedimentary environments, and expound their dynamic changes.It can be concluded that the SZB and DPB sediments are essentially of continental source.Their REE distribution patterns are quite different from those of Pacific pelagic sediments, but are very similar to those of South Chi-na granites.Because of different sedimentary environments prevailing in the SZB and DPB, some REE fractionation would have taken place in the sediments of the two bays. 相似文献
The floating bridge bears the dead weight and live load with buoyancy, and has wide application prospect in deep-water transportation infrastructure. The structural analysis of floating bridge is challenging due to the complicated fluid-solid coupling effects of wind and wave. In this research, a novel time domain approach combining dynamic finite element method and state-space model (SSM) is established for the refined analysis of floating bridges. The dynamic coupled effects induced by wave excitation load, radiation load and buffeting load are carefully simulated. High-precision fitted SSMs for pontoons are established to enhance the calculation efficiency of hydrodynamic radiation forces in time domain. The dispersion relation is also introduced in the analysis model to appropriately consider the phase differences of wave loads on pontoons. The proposed approach is then employed to simulate the dynamic responses of a scaled floating bridge model which has been tested under real wind and wave loads in laboratory. The numerical results are found to agree well with the test data regarding the structural responses of floating bridge under the considered environmental conditions. The proposed time domain approach is considered to be accurate and effective in simulating the structural behaviors of floating bridge under typical environmental conditions.