首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   2篇
  国内免费   4篇
测绘学   8篇
大气科学   24篇
地球物理   33篇
地质学   73篇
海洋学   11篇
天文学   11篇
综合类   2篇
自然地理   15篇
  2022年   2篇
  2021年   1篇
  2019年   6篇
  2018年   4篇
  2017年   5篇
  2016年   8篇
  2015年   4篇
  2014年   23篇
  2013年   8篇
  2012年   9篇
  2011年   6篇
  2010年   9篇
  2009年   7篇
  2008年   8篇
  2007年   6篇
  2006年   6篇
  2005年   9篇
  2004年   10篇
  2003年   8篇
  2002年   9篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1979年   1篇
  1969年   1篇
  1968年   2篇
排序方式: 共有177条查询结果,搜索用时 93 毫秒
71.
Simple yet physically based models to evaluate stream–aquifer interactions during a flooding event subject to triangular stream stage variation were developed in this study. The results from the developed models were compared with other analytical and numerical solutions and noted to be very accurate. The study fills an important gap with regard to available analytical and semi-analytical solutions for modeling stream–aquifer interactions, which can be used for evaluating numerical codes. In particular, the developed models are very useful to obtain preliminary insights with regard to bank storage in ungaged watersheds as required for watershed management and planning studies in rapidly urbanizing watersheds. The utility of the model is illustrated by applying it to study the effects of urbanization on stream–aquifer interactions in the Arroyo Colorado River Watershed along the US–Mexico border region. The results indicate that increased urbanization reduces the amount of influx into the banks. The reduction in flood passage time was noted to have a greater impact than the associated rise in stage. The presence of a semi-permeable barrier was seen to mask the effects of urbanization. The model results also implicitly highlight the importance of how water quality variations caused due to urbanization can affect stream–aquifer interactions.  相似文献   
72.
Principal component analysis has been applied for source identification and to assess factors affecting concentration variations. In particular, this study utilizes principal component analysis (PCA) to understand groundwater geochemical characteristics in the central and southern portions of the Gulf Coast aquifer in Texas. PCA, along with exploratory data analysis and correlation analysis is applied to a spatially extensive multivariate dataset in an exploratory mode to conceptualize the geochemical evolution of groundwater. A general trend was observed in all formations of the target aquifers with over 75 % of the observed variance explained by the first four factors identified by the PCA. The first factor consisted of older water subjected to weathering reactions and was named the ionic strength index. The second factor, named the alkalinity index explained greater variance in the younger formations rather than in the older formations. The third group represented younger waters entering the aquifers from the land surface and was labeled the recharge index. The fourth group which varied between aquifers was either the hardness index or the acidity index depending on whether it represented the influences of carbonate minerals or parameters affecting the dissolution of fluoride minerals, respectively. The PCA approach was also extended to the well scale to determine and identify the geographic influences on geochemical evolution. It was found that wells located in outcrop areas and near rivers and streams had a larger influence on the factors suggesting the importance of surface water–groundwater interactions.  相似文献   
73.
Hydraulic gradient is a fundamental aquifer characteristic required to estimate groundwater flow and quantify advective fluxes of pollutants. Graphical and local estimation schemes using potentiometric head information from three or four wells are used to compute hydraulic gradients but suffer from imprecision and subjectivity. The use of linear regression is recommended when hydraulic head data from a groundwater monitoring network consisting of several wells are available. In such cases, statistical influence analysis can be carried out to evaluate how each well within the network impacts the gradient estimate. A suite of five metrics, namely—(1) the hat-values, (2) studentized residuals, (3) Cook’s distance, (4) DFBETAs and (5) Covariance ratio (COVRATIO) are used in this study to identify influential wells within a regional groundwater monitoring network in Kleberg County, TX. The hat-values indicated that the groundwater network was reasonably well balanced and no well exerted an undue influence on the regression. The studentized residuals and Cook’s distance indicated the wells with the highest influence on the regression predictions were those that were close to high groundwater production centers or affected by coastal-aquifer interactions. However, the wells in the proximity of the production centers had the highest impact on the estimated gradient values as ascertained using DFBETAs. The covariance ratio which indicates the sensitivity of a monitoring well on the estimated standard error of regression was noted to be significant at most wells within the network. Therefore, networks seeking to address changes in groundwater gradients due to climate and anthropogenic influences need to be denser than those used to ascertain synoptic gradient estimates alone. The magnitude of the groundwater velocity was greatly underestimated when the influential wells were excluded from the network. The direction of flow was affected to a lesser extent, but a complete gradient reversal was noted when the network consisted of only four peripheral wells. The influence analysis therefore provides a valuable tool to assess the importance of individual wells within a monitoring network and can therefore be useful when existing networks are to be pruned due to fiscal constraints.  相似文献   
74.
The sea levels along the semi-arid South Texas coast are noted to have risen by 3–5 mm/year over the last five decades. Data from General Circulation Models (GCMs) indicate that this trend will continue in the 21st century with projected sea level rise in the order of 1.8–5.9 mm/year due to the melting of glaciers and thermal ocean expansion. Furthermore, the temperature in South Texas is projected to increase by as much as 4 °C by the end of the 21st century creating a greater stress on scarce water resources of the region. Increased groundwater use hinterland due to urbanization as well as rising sea levels due to climate change impact the freshwater-saltwater interface in coastal aquifers and threaten the sustainability of coastal communities that primarily rely on groundwater resources. The primary goal of this study was to develop an integrated decision support framework to assist land and water planners in coastal communities to assess the impacts of climate change and urbanization. More specifically, the developed system was used to address whether coastal side (primarily controlled by climate change) or landward side processes (controlled by both climate change and urbanization) had a greater control on the saltwater intrusion phenomenon. The decision support system integrates a sharp-interface model with information from GCMs and observed data and couples them to statistical and information-theoretic uncertainty analysis techniques. The developed decision support system is applied to study saltwater intrusion characteristics at a small coastal community near Corpus Christi, TX. The intrusion characteristics under various plausible climate and urbanization scenarios were evaluated with consideration given to uncertainty and variability of hydrogeologic parameters. The results of the study indicate that low levels of climate change have a greater impact on the freshwater-saltwater interface when the level of urbanization is low. However, the rate of inward intrusion of the saltwater wedge is controlled more so by urbanization effects than climate change. On a local (near coast) scale, the freshwater-saltwater interface was affected by groundwater production locations more so than the volume produced by the community. On a regional-scale, the sea level rise at the coast was noted to have limited impact on saltwater intrusion which was primarily controlled by freshwater influx from the hinterlands towards the coast. These results indicate that coastal communities must work proactively with planners from the up-dip areas to ensure adequate freshwater flows to the coast. Field monitoring of this parameter is clearly warranted. The concordance analysis indicated that input parameter sensitivity did not change across modeled scenarios indicating that future data collection and groundwater monitoring efforts should not be hampered by noted divergences in projected climate and urbanization patterns.  相似文献   
75.
76.
77.
The far outer regions of galactic disks allow an important probe of both star formation and galaxy formation. I discuss how observations of HII regions in these low gas density, low metallicity environments can shed light on the physical processes which drive galactic star formation. The history of past star formation at large radii, as traced by observations of old and intermediate-age stars, constrains the epoch at which the highest angular momentum regions of disks were in place; first results for the M31 disk suggest this occured a significant (≳ 8 Gyr) time ago. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   
78.
While scientific consensus and political and media messages appear to be increasingly certain, public attitudes and action towards the issue do not appear to be following suit. Popular and academic debate often assumes this is due to ignorance or misunderstanding on the part of the public, but some studies have suggested political beliefs and values may play a more important role in determining belief versus scepticism about climate change. The current research used two representative postal surveys of the UK public to: measure scepticism and uncertainty about climate change; determine how scepticism varies according to individual characteristics, knowledge and values; and examine how scepticism has changed over time. Findings show denial of climate change is less common than the perception that the issue has been exaggerated. Scepticism was found to be strongly determined by individuals’ environmental and political values (and indirectly by age, gender, location and lifestyle) rather than by education or knowledge. Between 2003 and 2008, public uncertainty about climate change has remained remarkably constant, although belief that claims about the issue are exaggerated has doubled over that period. These results are interpreted with reference to psychological concepts of motivated reasoning, confirmation bias and ‘finite pool of worry’. Implications for communication and policy are discussed.  相似文献   
79.
We analyze sea ice changes from eight different earth system models that have conducted experiment abrupt4xCO2 of the Coupled Model Intercomparison Project Phase 5(CMIP5). In response to abrupt quadrupling of CO2 from preindustrial levels, Arctic temperatures dramatically rise by about 10°C—16°C in winter and the seasonal sea ice cycle and sea ice concentration are significantly changed compared with the pre-industrial control simulations(pi Control). Changes of Arctic sea ice concentration are spatially correlated with temperature patterns in all seasons and highest in autumn. Changes in sea ice are associated with changes in atmospheric circulation patterns at heights up to the jet stream. While the pattern of sea level pressure changes is generally similar to the surface air temperature change pattern, the wintertime 500 h Pa circulation displays a positive Pacific North America(PNA) anomaly under abrupt4xCO2-pi Control. This large scale teleconnection may contribute to, or feedback on, the simulated sea ice cover change and is associated with an intensification of the jet stream over East Asia and the north Pacific in winter.  相似文献   
80.
Large, rapid rockslope failures generate deposits with complex morphologies due to a number of causal and influencing factors. To investigate these, we conducted a detailed case study at the carbonate Tschirgant deposit (Tyrol, Austria). It preserved evidence of simultaneous rock sliding (very large, coherent hummocks) and rock avalanche spreading (smaller, more scattered hummocks and ridges). Motion indicators, such as longitudinal ridges furthermore pinpoint the transition between linear sliding and radial spreading. The lithological distribution in the Tschirgant deposit shows that it retained source stratigraphy despite being split into two accumulation lobes by a high bedrock ridge. Furthermore, lithology had a very strong control on the final deposit morphology in that the different lithologic units form individual deposit surfaces. River erosion has created fortuitous outcrops that reveal the basal rock avalanche contact. The underlying valley‐fill sediments (substrates) have been intricately involved in shaping the rock avalanche morphology and, where entrained, highlight internal rock avalanche deformation features. This study shows that intrinsic dynamic properties of granular media (e.g. tendency for longitudinal alignments), emplacement mode, lithology (and source predisposition), runout path topography, and substrates form the quintet of causal factors that shape rock avalanche morphology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号