首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   894篇
  免费   51篇
  国内免费   6篇
测绘学   12篇
大气科学   77篇
地球物理   240篇
地质学   342篇
海洋学   80篇
天文学   114篇
综合类   12篇
自然地理   74篇
  2024年   2篇
  2023年   6篇
  2022年   15篇
  2021年   29篇
  2020年   25篇
  2019年   30篇
  2018年   41篇
  2017年   31篇
  2016年   59篇
  2015年   50篇
  2014年   53篇
  2013年   61篇
  2012年   45篇
  2011年   68篇
  2010年   45篇
  2009年   71篇
  2008年   45篇
  2007年   43篇
  2006年   31篇
  2005年   17篇
  2004年   27篇
  2003年   18篇
  2002年   22篇
  2001年   12篇
  2000年   8篇
  1999年   10篇
  1998年   5篇
  1997年   8篇
  1996年   6篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1990年   3篇
  1989年   2篇
  1987年   4篇
  1985年   5篇
  1984年   2篇
  1983年   3篇
  1982年   4篇
  1980年   3篇
  1979年   4篇
  1978年   2篇
  1977年   3篇
  1974年   2篇
  1972年   5篇
  1964年   1篇
  1960年   1篇
  1959年   1篇
  1942年   1篇
排序方式: 共有951条查询结果,搜索用时 859 毫秒
361.
The horizontal distribution of phytoplankton in a medium-size canyon type reservoir, forced by weak winds of 3–4 ms?1, is largely driven by the interaction of the large-scale circulation and processes regulating the vertical distribution of algal cells in the water column. These drivers, in turn, are subject to diurnal variations, making our understanding of the horizontal distribution of phytoplankton a challenging task. A three-dimensional physical-–ecological model is used to understand the spatial distribution of algae and the role of diurnal variations in the physical–biological drivers. The model was used to demonstrate that the large-scale circulation induced during the day is more efficient generating patchiness than the circulation existing at night, when convectively driven turbulence homogenizes the upper layers. Different spatial distributions develop for different populations and under different forcing scenarios, characterized in terms of the directionality of wind forcing, wind magnitude and the lags between winds and diel heat fluxes. The time scales needed so that algal biomass in the surface exhibit significant longitudinal gradients—T P —will vary depending on the algal group, and its ability to regulate its vertical position. These scales are shorter for those species that either migrate actively in the water column or exhibit positive buoyancy (Cryptophytes or Positive buoyant algae). In El Gergal, these scales T P are on the order of a few days. Synoptic changes in the meteorological forcing, like the passing of a front, could potentially change the longitudinal distribution of algal biomass if they persist for periods of time longer than T P .  相似文献   
362.
We show that interaction of two monochromatic waves at the water surface enters a different dynamic regime if their wavenumbers become very close. The study is conducted by means of a fully nonlinear wave model. In the course of evolution of the two waves, downshifting of the initial wave energy and growth of the first mode occur depending on wave steepness and dk/k. Behaviour of these features changes if dk/k?<?0.0025: both downshifting and growth rate become independent of dk/k, accompanied by rapid transfer of wave energy to large scales.  相似文献   
363.
The most direct method for flux estimation uses eddy covariance, which is also the most commonly used method for land-based measurements of surface fluxes. Moving platforms are frequently used to make measurements over the sea, in which case motion can disturb the measurements. An alternative method for flux estimation should be considered if the effects of platform motion cannot be properly corrected for. Three methods for estimating CO2 fluxes are studied here: the eddy-covariance, the inertial-dissipation, and the cospectral-peak methods. High-frequency measurements made at the land-based Östergarnsholm marine station in the Baltic Sea and measurements made from a ship during the Galathea 3 expedition are used. The Kolmogorov constant for CO2, used in the inertial-dissipation method, is estimated to be 0.68 and is determined using direct flux measurements made at the Östergarnsholm site. The cospectral-peak method, originally developed for neutral stratification, is modified to be applicable in all stratifications. With these modifications, the CO2 fluxes estimated using the three methods agree well. Using data from the Östergarnsholm site, the mean absolute error between the eddy-covariance and inertial-dissipation methods is 0.25 μmol  m?2 s?1. The corresponding mean absolute error between the eddy-covariance and cospectral-peak methods is 0.26 μmol m?2 s?1, while between the inertial-dissipation and cospectral-peak methods it is 0.14 μmol m?2 s?1.  相似文献   
364.
Mineralogical (X-ray diffraction) and geochemical (X-ray fluorescence) compositional data of Alpine Tethyde mudrocks from Sicily were used to unravel the interplay of provenance and diagenesis by means of multivariate statistical methods (PCA, discriminant function analysis) designed for non-negative constant-sum data. The Sicilian Alpine Tethydes comprise Cretaceous–Eocene scaly shales (Mt. Soro and Upper Scagliose Shales Units), Eocene–Oligocene variegated shales (Troina and Nicosia Units), and Miocene Numidian shales (Nicosia Unit). The use of biplots of clr-transformed variables allows discrimination of two different groups of shales. High CIA values reveal a strongly weathered source area especially for the Numidian shales. The analyses of mixed-layered clay minerals indicate that the behaviour of K2O and geochemical affine elements is controlled by the diagenetic grade, which increases from south-west to north-east in response to tectonic loading. Ratios of selected elements (Zr, Y, La, Nb, Ti, Co, Cr, Ni), considered essentially unchanged with respect to the source rocks, are similar in the scaly and variegated shales, and resemble the Variscan Peloritani metamorphic basement. In contrast, the distinct geochemical signature of the Numidian shales reveals a source similar to the average cratonic sandstone, suggesting derivation from external sources located in the foreland. Multivariate discriminant analysis performed on selected trace elements confirms the previous suggestions.  相似文献   
365.
High‐resolution palaeorecords of climate are critical to improving current understanding of climate variability, its sensitivity and impact on the environment in the past and in the future. Sediments from the Cariaco Basin off the coast of Venezuela have proven to be sensitive recorders of tropical palaeoclimate variability down to an annual scale. However, the fingerprint of climate and sea level in the sediments of the last glacial period is still not completely understood. In this study, lamination analysis of sediments from the Cariaco Basin is extended to the last glacial period. Detailed sedimentological and geochemical analysis (laser ablation–inductively coupled plasma–mass spectrometry) reveals couplets of light‐coloured, terrigenous‐rich and dark‐coloured, biogenic opal‐rich laminae, which are interpreted to reflect the seasonal migration of the Intertropical Convergence Zone. In addition, a previously undescribed, nearly pure terrigenous lamina type is observed, which is referred to hereafter as a ‘C‐layer’. The C‐layers in the sedimentary sequence are interpreted as flood layers that originate from local rivers. The occurrence of these C‐layers is investigated for two core locations in the Cariaco Basin over the last 110 kyr by continuous X‐ray fluorescence scanning. Dansgaard–Oeschger oscillations are most clearly traced by proxies reflecting productivity and marine organic matter content of the sediment. In contrast, the abundance of terrigenous material differs at times between the two sites. On an interglacial to glacial timescale, the ability to record events causing C‐layers is likely to be influenced by changes in sea level and source proximity. On a millennial scale, both sediment cores contain more C‐layers during warmer interstadials compared with colder stadials during Marine Isotope Stage 3. This finding implies that interstadials were not only wetter than stadials, but probably also characterized by increased rainfall variability, leading to an enhanced frequency of flooding events in the hinterland of the Cariaco Basin.  相似文献   
366.
The study of near‐pristine estuaries can be used as a tool for mitigation projects of harmful effects in anthropogenic eutrophic systems, since one can analyze the effect of temporal and spatial variations generated mainly by natural forces. Phytoplankton taxonomy has been used as a classical indicator to assess changes in transitional water communities, however alternative methods based on morphological, behavioral and physiological traits offer the opportunity to compare sites or moments with different taxonomic compositions. Our goal, in this context, is to evaluate phytoplankton community short‐term and seasonal variability in a near‐pristine estuary, Barra Grande estuary (Ilha Grande, RJ, Brazil), through species functional traits and thus community functional diversity. Samplings were carried out in a mooring in complete tidal cycles, seasonally during 2012. Our results showed a diverse phytoplankton community with 38 frequent and abundant taxa, marked by density variation (1.2 × 10.4–2 × 10.7 cell L?1) in depth, with abundance inversely related to tidal currents. The functional structure of the phytoplankton community measured by functional diversity (FD), varied seasonally in and across a gradient of tidal energy. A core community, mainly represented by flagellates and dinoflagellates, occurred in all observations and was highly functional (high FD), exploiting a variety of habitats. The chain‐forming diatoms were associated with high tidal energy, and occurred in higher densities during summer. Phytoplankton cell size, cell shape, and the ability to form colonies are extremely plastic traits that can be regulated by the environment, however, isolated tychopelagic diatoms were present in the study area across all seasons, with higher contributions in autumn and winter, reflecting the shallow characteristic of this system. During the winter, an exposed sandbar was formed, and the lack of connection with the ocean resulted in an abundance of riverine and brackish water taxa. In this near‐pristine estuary the densities and occurrences of HAB phytoplankton are low. Trait‐based analyses add information about community structure, which can be impacted by anthropogenic actions in urbanized coastal systems. Thus the information provided by this study regarding phytoplankton functional diversity and its relation to nutrients and hydrography in Barra Grande Estuary can be applied as a baseline model for the development of public policies.  相似文献   
367.
Megafaunal diversity in the deep sea shows a parabolic pattern with depth. It can be affected by factors such as low oxygen concentration, which suppresses diversity, or the presence of submarine canyons, which enhances it. Barkley Canyon, located off the west coast of British Columbia, Canada, is a submarine canyon that extends from the continental margin (200 m) into the deep ocean (2,000 m). This canyon receives drift kelp from shoreline kelp forests and contains an oxygen minimum zone (OMZ) at 500 to 1,500 m depth. Our study investigated the abundance and diversity of epibenthic megafauna over a range of depths (200–2,000 m) and oxygen concentrations (0.5–5.0 ml/L) within Barkley Canyon, as well as changes in abundance near detrital kelp. Video was collected using the remotely operated vehicle ROPOS along seven 1‐km cross‐canyon (i.e., across the axis of the canyon) transects and three 40‐m perpendicular cross‐transects over kelp. Taxonomic groups were associated with depth, temperature, and the presence of pebbles. The OMZ restricted pennatulids, and edge effects along OMZ boundaries were observed for ophiuroids. The geomorphology of the sea floor affected the distribution of taxa across the canyon, with Porifera mainly found along the walls and Echinoidea within the canyon axis. Expected richness exhibited a bimodal pattern, peaking at 300 and 2,000 m, possibly due to the combined effect of the OMZ and the submarine canyon. Echinoidea aggregated near drift kelp at 200 and 300 m. We found that faunal communities in Barkley Canyon were influenced by several confounded factors including depth, oxygen and substrate. Understanding faunal patterns is paramount with increased exploitation and a changing climate.  相似文献   
368.
369.
370.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号