首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   7篇
  国内免费   2篇
测绘学   3篇
大气科学   11篇
地球物理   32篇
地质学   57篇
海洋学   12篇
天文学   17篇
综合类   1篇
自然地理   14篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   6篇
  2018年   2篇
  2017年   3篇
  2016年   7篇
  2015年   5篇
  2014年   9篇
  2013年   10篇
  2012年   10篇
  2011年   8篇
  2010年   9篇
  2009年   20篇
  2008年   4篇
  2007年   7篇
  2006年   6篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1995年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
排序方式: 共有147条查询结果,搜索用时 687 毫秒
141.
I. Zak  R. Freund 《Tectonophysics》1981,80(1-4):27-38
The Dead Sea depression sensu stricto, forms the deepest continental part of the Dead Sea rift, a transfer which separates the Levanthine and Arabian plates. It is occupied by three distinct sedimentary bodies, deposited in basins whose depocenters are displaced northward with time. They are: the continental red beds of the Hazeva Formation (Miocene), the Bira-Lido-Gesher marls and the exceptionally thick rocksalt of the Sedom Formation (Pliocene—Early Pleistocene), and the successive Amora, Lisan and Dead Sea evaporites and clastics (Early Pleistocene—Recent). Lengthwise and crosswise asymmetries of these sedimentary basins and their respective depocenters are due to: leftlateral shear combined with anticlockwise rotation of the Arabian (eastern) plate; steeper faulting of the crustal eastern margin than of the western sedimentary margin, and modification of depositional pattern by twice filling up of basins, by Hazeva red beds during Late Miocene pause of shear and by Sedom rocksalt during Pliocene marine ingression.  相似文献   
142.
The production of animal-based foods is associated with higher greenhouse gas (GHG) emissions than plant-based foods. The objective of this study was to estimate the difference in dietary GHG emissions between self-selected meat-eaters, fish-eaters, vegetarians and vegans in the UK. Subjects were participants in the EPIC-Oxford cohort study. The diets of 2,041 vegans, 15,751 vegetarians, 8,123 fish-eaters and 29,589 meat-eaters aged 20–79 were assessed using a validated food frequency questionnaire. Comparable GHG emissions parameters were developed for the underlying food codes using a dataset of GHG emissions for 94 food commodities in the UK, with a weighting for the global warming potential of each component gas. The average GHG emissions associated with a standard 2,000 kcal diet were estimated for all subjects. ANOVA was used to estimate average dietary GHG emissions by diet group adjusted for sex and age. The age-and-sex-adjusted mean (95 % confidence interval) GHG emissions in kilograms of carbon dioxide equivalents per day (kgCO2e/day) were 7.19 (7.16, 7.22) for high meat-eaters (?>?=?100 g/d), 5.63 (5.61, 5.65) for medium meat-eaters (50-99 g/d), 4.67 (4.65, 4.70) for low meat-eaters (?<?50 g/d), 3.91 (3.88, 3.94) for fish-eaters, 3.81 (3.79, 3.83) for vegetarians and 2.89 (2.83, 2.94) for vegans. In conclusion, dietary GHG emissions in self-selected meat-eaters are approximately twice as high as those in vegans. It is likely that reductions in meat consumption would lead to reductions in dietary GHG emissions.  相似文献   
143.
The Bali Action Plan and Cancun agreements on Reducing Emissions from Deforestation and forest Degradation, plus forest conservation, sustainable management of forests and enhancement of forest carbon stocks (REDD+) have encouraged demonstration activities as part of Readiness and a step towards national approaches. This has enabled important growth in pilot and demonstration projects. Yet an understanding about how these projects are connected and contribute to national-level technical, policy, and institutional preparedness (Readiness) for REDD+ is lacking. This article examines the linkages between national processes and the private-sector-driven Kasigau Corridor REDD+ project in Kenya. The study reveals interesting cross-scale interactions that have increased over time and have high potential for harnessing national-level processes through lessons from the project level. Key innovations from the Kasigau Corridor Project include the implementation of REDD+ in dry forests, operationalization of conservation easements in the context of REDD+, and demonstration of potential ways of obtaining upfront finance for REDD+. The study also provides a number of key recommendations for Kenya and REDD+ in general, including official endorsement of stand-alone REDD+ projects under national Readiness schemes and exploring jurisdictional and nested REDD+ approaches. Additionally, more accommodating national-level frameworks for attracting private-sector engagement and investments, and for integrating, scaling-out, or scaling-up lessons from such projects, would be needed to enhance national REDD+ Readiness.  相似文献   
144.
145.
Two drill cores of the UG2 chromitite from the eastern and western Bushveld Complex were studied by whole-rock analysis, ore microscopy, SEM/Mineral Liberation Analysis (MLA), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis. The top and base of the UG2 main seam have the highest bulk-rock Pd and Pt concentrations. Sulfides mostly occur as aggregates of pentlandite, chalcopyrite, and rare pyrrhotite and pyrite or as individual grains associated mostly with chromite grains. In situ LA-ICP-MS analyses reveal that pentlandite carries distinctly elevated platinum-group element (PGE) contents. In contrast, pyrrhotite and chalcopyrite contain very low PGE concentrations. Pentlandite shows average maximum values of 350–1,000 ppm Pd, 200 ppm Rh, 130–175 ppm Ru, 20 ppm Os, and 150 ppm Ir, and is the principal host of Pd and Rh in the studied ores of the UG2. Mass balance calculations were conducted for samples representing the UG2 main seam of the drill core DT46, eastern Bushveld. Pentlandite consistently hosts elevated contents of the whole-rock Pd (up to 55 %) and Rh (up to 46 %), and erratic contents of Os (up to 50 %), Ir (2 to 17 %), and Ru (1–39 %). Platinum-group mineral (PGM) investigations support these mass balance results; most of the PGM are Pt-dominant such as braggite/cooperite and Pt-Fe alloys or laurite (carrying elevated concentrations of Os and Ir). Palladium and Rh-bearing PGM are rare. Both PGE concentrations and their distribution in base-metal sulfides (BMS) in the UG2 largely resemble that of the Merensky Reef, as most of the Pd and Rh are incorporated in pentlandite, whereas pyrrhotite, chalcopyrite, and pyrite are almost devoid of PGE.  相似文献   
146.
The mountain belts of the Dzungarian Alatau (SE Kazakhstan) and the Tien Shan are part of the actively deforming India–Asia collision zone but how the strain is partitioned on individual faults remains poorly known. Here we use terrace mapping, topographic profiling, and 10Be exposure dating to constrain the slip rate of the 160-km-long Usek thrust fault, which defines the southern front of the Dzungarian Alatau. In the eastern part of the fault, where the Usek River has formed five terraces (T1–T5), the Usek thrust fault has vertically displaced terrace T4 by 132 ± 10 m. At two sites on T4, exposure dating of boulders, amalgamated quartz pebbles, and sand from a depth profile yielded 10Be ages of 366 ± 60 ka and 360 + 77/− 48 ka (both calculated for an erosion rate of 0.5 mm/ka). Combined with the vertical offset and a 45–70° dip of the Usek fault, these age constraints result in vertical and horizontal slip rates of ~ 0.4 and ~ 0.25 mm/a, respectively. These rates are below the current resolution of GPS measurements and highlight the importance of determining slip rates for individual faults by dating deformed landforms to resolve the pattern of strain distribution across intracontinental mountain belts.  相似文献   
147.
NASA's OSIRIS-REx spacecraft collected samples from carbonaceous near-Earth asteroid (101955) Bennu on October 20, 2020, and will deliver them to the Earth on September 24, 2023. The samples will be processed at the NASA Johnson Space Center (JSC), where most of the sample collection will be subsequently curated in a new cleanroom suite. The spacecraft collected loose regolith two ways: in a bulk sample chamber capable of holding up to 2 kg, and on industrial Velcro “contact pads” intended to collect small particles at the surface. Included in the JSC collection will be the bulk sample, the contact pads, contamination-monitoring witness plates, and supporting hardware. Planning for the curation of the samples and hardware started at the earliest phase of proposal development and continued in parallel with project development and execution. Because a major mission goal is characterization of organic compounds in the Bennu samples, extra effort was spent in the design stage to ensure a clean curation environment. Here, we describe the preparations to receive the sample, including the design, construction, outfitting, and monitoring of the cleanrooms at JSC; the planned recovery of the sample-containing capsule when it lands on Earth; and the approach to characterizing and cataloging the samples. These curation efforts will result in the distribution of pristine Bennu samples from JSC to the OSIRIS-REx science team, international partners, and the global scientific community for years to come.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号