首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   7篇
测绘学   6篇
大气科学   12篇
地球物理   53篇
地质学   47篇
海洋学   27篇
天文学   31篇
综合类   1篇
自然地理   8篇
  2023年   1篇
  2021年   2篇
  2020年   4篇
  2019年   5篇
  2018年   5篇
  2017年   6篇
  2016年   9篇
  2015年   7篇
  2014年   9篇
  2013年   12篇
  2012年   12篇
  2011年   13篇
  2010年   18篇
  2009年   10篇
  2008年   8篇
  2007年   7篇
  2006年   3篇
  2005年   5篇
  2004年   3篇
  2003年   3篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1972年   2篇
  1969年   1篇
  1968年   1篇
排序方式: 共有185条查询结果,搜索用时 15 毫秒
101.
Magma-carbonate rock interaction is investigated through a geochemical and Sr-Nd-O isotope study of granular lithic clasts (ejecta) from the Alban Hills ultrapotassic volcano, Central Italy. Some samples (Group-1) basically represent intrusive equivalents of Alban Hills magmas. A few samples (Group-2) are ultramafic, have high MgO (∼30 to 40 wt%) and δ18O‰, and originated by accumulation of mafic phases that crystallised from ultrapotassic melts during assimilation of dolomitic rocks. Group-3 ejecta consist of dominant K-feldspar, and show major element compositions similar to phonolites, which, however, are absent among the Alban Hills volcanics. Finally, another group (Group-4) contains corroded K-feldspars, surrounded by a microgranular to porphyritic matrix, made of igneous minerals (K-feldspar, foids, clinopyroxene, phlogopite) plus wollastonite, garnet, and some cuspidine. Group-4 ejecta are depleted in SiO2 and enriched in CaO with respect to Group-3.The analysed ejecta have similar 143Nd/144Nd (0.51204-0.51217) as the Alban Hills lavas, whereas 87Sr/86Sr (0.70900-0.71067) is similar to lower. Whole rocks δ18O‰ ranges from +7.0 to +13.2, reaching maximum values in ultramafic samples. A positive correlation with CaO is observed in single rock groups. Large Ion Lithophile Element (LILE) abundances and REE fractionation are generally high, and extreme values of Th, U and LREE are found in some Group-3 and Group-4 rocks.Mineralogical, petrological and geochemical data reveal extensive interaction between magma and carbonate wall rocks, involving both dolostones and limestones. These processes had dramatic effects on magma compositions, especially on phonolites, which were transformed to foidites. Evidence of such a process is found in Group-4 samples, in which K-feldspar is observed to react with a matrix that represents strongly undersaturated melts formed by interaction between silicate magma and carbonates. Trace element data also testify to a very important role for F-CO2-H2O-S fluids during magma-wall rock interaction. Fluid transfer was responsible for extreme enrichments in Th, U, and LREE especially observed in Group-3 and Group-4 rocks. Implications of these processes for potassic magma evolution in Central Italy are discussed.  相似文献   
102.
A shallow water hydrostatic 2D hydrodynamic numerical model, based on the boundary conforming coordinate system, was used to simulate aspects of both general and small scale oceanic features occurring in the composite system constituted by the Adriatic Sea and the Lagoon of Venice (Italy), under the influence of tide and realistic atmospheric forcing. Due to a specific technique for the treatment of movable lateral boundaries, the model is able to simulate efficiently dry up and flooding processes within the lagoon. Firstly, a model calibration was performed by comparing the results of the model, forced using tides and ECMWF atmospheric pressure and wind fields, with observations collected for a set of 33 mareographic stations uniformly distributed in the Adriatic Sea and in the Lagoon of Venice. A second numerical experiment was then carried out by considering only the tidal forcing. Through a comparison between the results obtained in the two experiments it was possible to assess the reliability of the estimated parameter through the composite forcing. Model results were then verified by comparing simulated amplitude and phase of each tidal constituent as well as tidal velocities simulated at the inlets of the lagoon and in the Northern Adriatic Sea with the corresponding observed values. The model accurately reproduces the observed harmonics: mean amplitude differences rarely exceed 1 cm, while phase errors are commonly confined below 15°. Semidiurnal and diurnal currents were correctly reproduced in the northern basin and a good agreement was obtained with measurements carried out at the lagoon inlets. On this basis, the outcomes of the hydrodynamic model were analyzed in order to investigate: (i) small-scale coastal circulation features observed at the interface between the adjoining basins, which consist often of vortical dipoles connected with the tidal flow of Adriatic water entering and leaving the Lagoon of Venice and with along-shore current fields connected with specific wind patterns; (ii) residual oscillations, which are often connected to meteorological forcing over the basin. In particular, it emerges that small-scale vortical features generated near the lagoon inlet can be efficiently transported toward the open sea, thus contributing to the water exchange between the two marine regions, and a realistic representation of observed residual oscillations in the area would require a very detailed knowledge of atmospheric as well as remote oceanic forcing.  相似文献   
103.
We examined four dispersed, coalified ovules, Trigonocarpus grandis, of medullosalean seed-fern affinity from the Late Pennsylvanian age Sydney Coalfield, Canada, which represent the larger type of the 7–8 cm trigonocarpalean form species. At first glance it appears that the ovules are preserved like the usual Carboniferous foliar compressions, i.e. one coalified layer with one preserved anatomical tissue, the cuticle. However, careful sample preparation uncovered at least three coalified layers, and Schulze’s oxidative maceration process, which dissolves the coalified material, revealed several tissue layers. Altogether, eight sample forms were defined: (i) coalified layer, (ii) cuticle A, (iii) cupric + vitrain, (iv) vitrain, (v) cupric, (vi) cuticle B, (vii) alkaline solution and (viii) added coal seam material. The purpose of the study was twofold: first, to systematically analyze the forms by way of Fourier transform infrared (FTIR) spectrometry to fill a gap in chemical information that exits for coalified trigonocarpalean ovules of Carboniferous seed ferns; second, to use principal component analysis to focus on groupings as a function of chemical structure (functional groups) and to assess the different fossil forms in terms of FTIR chemical parameters, based on a 8 × 49 data matrix.Results include distinction among the three coaly sample forms, coalified layer (i), cupric + vitrain (iii) and cupric (v), based mainly, but not exclusively, on differences in carbonyl content, as well as length and branching of the polymethylenic chains. Important to note is the high aliphatic content of the cuticles as a signature of the biomacromolecules cutan/cutin. In particular, new insights into the structure of the original ovule are presented, and differences in chemistry are mainly a result of the complex structure of the precursor plant organ.  相似文献   
104.
Major, trace element, Sr isotopic and mineral chemical data are reported for mafic volcanic rocks (Mg-value 65) from the northern-central sector of the potassic volcanic belt of Central Italy. The rocks investigated range from potassic series (KS) and high-K series (HKS) to lamproitic (LMP) and kamafugitic (KAM) through a transitional series (TRANS), thus covering the entire compositional spectrum of potassic and ultrapotassic magmas. KAM rocks are strongly silica undersaturated and, compared with the other rock series, have low SiO2, Al2O3, Na2O, Sc and V and high CaO, K/Na, (Na + K)/Al. KS and HKS have high Al2O3, CaO and variable enrichment in K2O and incompatible elements. LMP rocks are saturated in silica and have high SiO2, K2O, K2O/Na2, MgO, Ni and Cr and low Al2O3, CaO, Na2O, Sc and V. TRANS rocks display intermediate compositional characteristics between LMP and KS.

All the rocks under study have fractionated hygromagmaphile element patterns with high LIL/HFS element values and negative anomalies of Ti, Ta, Nb and Ba. Negative Sr anomalies are observed in the LMP and TRANS rocks. LIL elements show overall positive correlations with K2O, whereas different trends of Sr and HFSE vs. K2O are defined by LMP-TRANS and KS-HKS-KAM. 87Sr/86Sr range from about 0.710 to 0.716. KS, HKS and KAM rocks have similar 87Sr/86Sr values clustering around 0.710. LMP and TRANS rocks have the highest 87Sr/86Sr values.

Geochemical and isotopic data reported for the most primitive Italian potassic and ultrapotassic rocks support the hypothesis that the interaction between crustal and mantle reservoirs was a main process in the genesis of Italian potassic magmatism. Simple mass balance calculations exclude, however, an important role of crustal assimilation during ascent of subcrustal magmas to the surface and indicate that the sources of Central Italy volcanics underwent contamination with fluids and/or melts released by upper crustal material previously brought into the mantle by subduction processes.

Different trends of incompatible elements vs. K2O observed in the studied rocks suggest distinct metasomatic processes for the sources of the investigated magmas. Liquids derived by bulk melting of pelitic sediments are believed to be the most likely contaminants of the source of LMP rocks. Fluids or melts rich in Ca, Sr and with high LILE/HFSE value and Sr isotopic composition around 0.710 are the most likely contaminant of the source region of KS, HKS and KAM volcanics. Variations in CaO, Na2O and ferromagnesian element abundances and ratios suggest that, in some zones, the mantle source of potassic magmas experienced partial melting with extraction of basaltic liquids prior to metasomatism.  相似文献   

105.
Angelo Peccerillo 《Lithos》1998,43(4):267-279
The Pleistocene intra-Apennine volcanic (IAV) centres occurring east of the potassium-rich Roman comagmatic province show variable petrological and geochemical composition. Some rocks have a strongly undersaturated ultrapotassic kamafugitic affinity with K2O/Na2O=8–20, whereas the rocks from the southern center of Mt. Vulture are still strongly undersaturated in silica but are enriched in both Na2O and K2O with K/Na around unity. Carbonate-rich pyroclastic rocks, believed to represent carbonatitic magmas, are found in the IAV centers. Kamafugites have high abundances of LILE and high LILE/HFSE ratios, and their incompatible element patterns resemble closely those of ultrapotassic rocks from the adjoining Roman province. The Vulture volcanics also display high contents of LILE, but their LILE/HFSE ratios are intermediate between intraplate alkaline rocks and kamafugites. The carbonate-rich rocks exhibit an exotic mineralogy and high enrichments in LILE, which speaks for a carbonatitic affinity. However, they have similar incompatible element patterns but consistently lower abundances of almost all the elements than the associated silicate volcanics. These data favour the hypothesis that the IAV carbonate rocks may represent mixtures of silicate magmas and geochemically depleted carbonate material. The sedimentary carbonates that crop out extensively along the Apennine chain may be the source of barren carbonate material. Overall, geochemical data of IAV centres and of the rocks from the Roman province display strong geochemical and isotopic evidence of being generated in an upper mantle that was modified by addition of upper crustal material brought down by subduction processes. A possible exception is represented by Mt. Vulture which, however, occurs east of the main axis of the Apennines, on the western margin of the foreland Adria plate. The occurrence of strongly undersaturated alkaline rocks requires magma generation at high pressures and . This is in agreement with the hypothesis that subduction processes under the Apennines occurred by consumption of poorly hydrated thinned or delaminated continental crust.  相似文献   
106.
A provenance and stratigraphic study of the Neoproterozoic Pontas do Salso Complex (PSC), western portion of the Dom Feliciano Belt (DFB), was conducted with U–Pb zircon geochronological analysis of the metasediments and the host rocks. The U–Pb isotopic data from detrital zircon of the metasediments indicate the source from the latest Middle Tonian to Late Cryogenian (between 897 and 684 Ma) and maximum depositional age of 685 ± 18 Ma in an arc-related basin setting adjacent in the Sao Gabriel Arc. The metasediments of the PSC form an elongated body in the N35°E direction and occur in the central portion of the São Gabriel Terrane (SGT), which is constituted by ophiolitic complexes and arc-related rocks, generated probably during the final consolidation of Rodinia supercontinent, although this question is still open. Low- to medium-K calc-alkaline, metaluminous affinity, and trace-element geochemistry suggest that the chemical composition of the protoliths was generated from metasomatized mantle sources in subduction zones. The PSC is composed of meta-arkoses, with subordinate metaconglomerates and metapelites. The meta-arkoses are disposed in plane-parallel layers, which also internally feature small-scale cross-bedding structures. The matrix has a blastopsammitic, poorly selected, fine to coarse texture, and hexagonal quartz and plagioclase porphyroclasts with superimposed thermal metamorphism. The polymict metaconglomerates are matrix-supported, with 15–55% of clasts of metavolcanic rocks, metasediments, undeformed granites, and quartz veins. The metapelites comprise mainly muscovite phyllites with syn-tectonic garnet and chloritoid porphyroblasts. The PSC represents a sedimentary succession deposited on an arc-related basin formed during the collapse and uplift of the SGT.  相似文献   
107.
108.
Community structure and faunal composition of bathyal decapod crustaceans off South-Eastern Sardinian deep-waters (Central-Western Mediterranean) were investigated. Samples were collected during 32 hauls between 793 and 1598 m in depth over the 2003–2007 period. A total of 1900 decapod specimens belonging to 23 species were collected. Multivariate analysis revealed the occurrence of three faunistic assemblages related to depth: (i) an upper slope community at depths of 793–1002 m; (ii) a middle slope community at depths of 1007–1212 m and (iii) a lower slope community at depths greater 1420 m. In the upper and middle slopes the benthic ( Polycheles typhlops ) and epibenthic–endobenthic feeders (mainly Aristeus antennatus and Geryon longipes ), which eat infaunal prey, were dominant, followed by the macroplankton–epibenthic feeders such as Acanthephyra eximia and Plesionika acanthonotus . In the deepest stratum, the most remarkable feature was the prevalence of macroplankton–epibenthic feeders ( A. eximia and P. acanthonotus ). A small percentage of the benthic deep-sea lobster Polycheles sculptus was also present. The biomass presented higher values in the middle slope and declined strongly in the lower slope. There was no general pattern of mean individual weight/size versus depth among decapods, and the changes seemed to be species-specific with different trends.  相似文献   
109.
Changes in the shore topography (e.g. slope) occur at a scale of hundreds of meters in several locations in the Lusitanian and the Mediterranean Sea provinces. We tested whether differences in the bottom inclination might affect the vertical distribution patterns of two sympatric coastal labrid fishes, the rainbow wrasse Coris julis and the ornate wrasse Thalassoma pavo. Visual censuses were used to determine the distribution and abundance of these labrid species in high (≥30°) and low (≤3°) slope rocky substrates covered by brown macroalgae and at two different depths (shallow, 4–7 m, and deep 14–20 m). Pectoral fin aspect ratio was used as an estimate of swimming performance to potentially explain the patterns observed. Despite the intrinsic biogeographical differences in the overall density of T. pavo and C. julis, on steep coasts the ornate wrasse dominated in shallow waters, whereas the two species coexisted both in shallow and deeper depths on gentle slope coasts. These distribution patterns were consistent across locations, and fin aspect ratio was not a good predictor of between‐habitat use for wrasses. We show that, under specific topographical conditions, the depth segregation pattern seems to be an interactive segregation (likely related to resource competition) rather than a result of selective segregation due to morphological differences in the pectoral fin. Significant ecological changes might occur in locations where the density of T. pavo has recently increased as a result of water warming.  相似文献   
110.
Two suites of ultramafic xenoliths have been found in ultrapotassic lavas from the 0.9 Ma old Torre Alfina volcano sited at the northern border of the Vulsinian district (Central Italy). One group of Xenoliths consists of spinel-bearing lherzolites, harzburgites, minor wherlites and dunites with a maximum size of 3–4 cm. Some samples contain discrete laths of phlogopite. A second class consists of phlogopite-rich, glass-bearing peridotites. The first suite displays textural characteristics such as triple points, deformed olivine with well developed kink banding and porphyroclastic textures indicating equilibration at high pressure. Pressure estimates give values in the range 1.3–2.5 GPa, corresponding to mantle depths in the area, where the present-day Moho is about 25 km deep. Equilibration temperatures have been estimated in the range between 950–1000°C. The chemical composition of some phases, such as the very high Fo contents of olivines (up to Fo94 in harzburgites), Mg content of orthopyroxenes and Cr/Cr+Al ratios of clinopyroxenes and spinels, suggest that these xenoliths represent peridotites which suffered different degrees of partial melting before being incorporated into the Torre Alfina magma. On the other hand, the occurrence of phlogopite speaks for metasomatic events. The phlogopite-rich, glass-bearing xenoliths consist of phlogopite, olivine, clinopyroxene, rare orthopyroxene and glass. Apatite is the most common accessory. Olivine is present in both euhedral and strained crystals. A few relics of protogranular textures are also observed. Textural and chemical evidence suggests that these xenoliths represent mica-rich peridotites which have undergone phlogopite breakdown during rapid rise to the surface with the development of a K-rich liquid which reacted with mafic phases producing a rapid growth of olivine and, to a lower extent, pyroxene. Originally, these xenoliths may have represented intensively metasomatized upper mantle. However, a cumulitic origin from previous potassic magmatic events cannot be excluded. The host lavas have compositions intermediate between high-silica lamproite and Roman-type ultrapotassic rock. They have high abundances of incompatible elements and radiogenic Sr, coupled with high Mg content, MgO/CaO, Ni and Cr. These features support a genesis in a residual upper mantle which has suffered partial melting with the extraction of basaltic liquids, followed by metasomatic events which caused an enrichment in incompatible elements and radiogenic Sr. The presence of mantle-derived ultramafic xenoliths in the torre Alfina lavas testifies for a rapid uprise of the magma which reached the surface without suffering fractional crystallization and significant interaction with the upper crust. Accordingly, the Torre Alfina lavas represent an unique example of primitive potassic liquid in Central Italy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号