首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2586篇
  免费   119篇
  国内免费   33篇
测绘学   88篇
大气科学   289篇
地球物理   657篇
地质学   805篇
海洋学   214篇
天文学   356篇
综合类   6篇
自然地理   323篇
  2022年   13篇
  2021年   50篇
  2020年   59篇
  2019年   54篇
  2018年   66篇
  2017年   80篇
  2016年   108篇
  2015年   88篇
  2014年   97篇
  2013年   193篇
  2012年   117篇
  2011年   156篇
  2010年   119篇
  2009年   140篇
  2008年   141篇
  2007年   139篇
  2006年   132篇
  2005年   108篇
  2004年   91篇
  2003年   92篇
  2002年   82篇
  2001年   52篇
  2000年   56篇
  1999年   38篇
  1998年   34篇
  1997年   30篇
  1996年   28篇
  1995年   30篇
  1994年   18篇
  1993年   19篇
  1992年   13篇
  1991年   18篇
  1990年   15篇
  1989年   29篇
  1988年   11篇
  1987年   21篇
  1986年   11篇
  1985年   22篇
  1984年   15篇
  1983年   18篇
  1982年   13篇
  1981年   20篇
  1980年   12篇
  1979年   14篇
  1978年   9篇
  1977年   8篇
  1976年   8篇
  1975年   7篇
  1974年   8篇
  1973年   6篇
排序方式: 共有2738条查询结果,搜索用时 15 毫秒
991.
Io’s sublimation-driven atmosphere is modeled using the direct simulation Monte Carlo (DSMC) method. These rarefied gas dynamics simulations improve upon earlier models by using a three-dimensional domain encompassing the entire planet computed in parallel. The effects of plasma heating, planetary rotation, inhomogeneous surface frost, molecular residence time of SO2 on the exposed (non-volatile) rocky surface, and surface temperature distribution are investigated. Circumplanetary flow is predicted to develop from the warm dayside toward the cooler nightside. Io’s rotation leads to a highly asymmetric frost surface temperature distribution (due to the frost’s high thermal inertia) which results in circumplanetary flow that is not axi-symmetric about the subsolar point. The non-equilibrium thermal structure of the atmosphere, specifically vibrational and rotational temperatures, is also examined. Plasma heating is found to significantly inflate the atmosphere on both the dayside and nightside. The plasma energy flux causes high temperatures at high altitudes but plasma energy depletion through the dense gas column above the warmest frost permits gas temperatures cooler than the surface at low altitudes. A frost map (Douté, S., Schmitt, B., Lopes-Gautier, R., Carlson, R., Soderblom, L., Shirley, J., and the Galileo NIMS Team [2001]. Icarus 149, 107-132) is used to control the sublimated flux of SO2 which can result in inhomogeneous column densities that vary by nearly a factor of four for the same surface temperature. A short residence time for SO2 molecules on the “rock” component is found to smooth lateral atmospheric inhomogeneities caused by variations in the surface frost distribution, creating an atmosphere that looks nearly identical to one with uniform frost coverage. A longer residence time is found to agree better with mid-infrared observations (Spencer, J.R., Lellouch, E., Richter, M.J., López-Valverde, M.A., Jessup, K.L, Greathouse, T.K., Flaud, J. [2005]. Icarus 176, 283-304) and reproduce the observed anti-jovian/sub-jovian column density asymmetry. The computed peak dayside column density for Io assuming a surface frost temperature of 115 K agrees with those suggested by Lyman-α observations (Feaga, L.M., McGrath, M., Feldman, P.D. [2009]. Icarus 201, 570-584). On the other hand, the peak dayside column density at 120 K is a factor of five larger and is higher than the upper range of observations (Jessup, K.L., Spencer, J.R., Ballester, G.E., Howell, R.R., Roesler, F., Vigel, M., Yelle, R. [2004]. Icarus 169, 197-215; Spencer et al., 2005).  相似文献   
992.
There are ∼300 features on the Asteroid 433 Eros that morphologically resemble ponds (flat-floored and sharply embaying the bounding depression in which they sit). Because boulders on Eros are apparently eroding in place and because ponds with associated boulders tend to be larger than ponds without blocks, we propose that ponds form from thermally disaggregated and seismically flattened boulder material, under the assumption that repeated day/night cycling causes material fatigue that leads to erosion of the boulders. Results from a simple boulder emplacement/thermal erosion model with boulders emplaced in a few discrete events (i.e., large impacts) match well the observed size distribution. Under this scenario, the subtle color differences of ponds (somewhat bluer than the rest of the surface) might be due to some combination of less space-weathered material and density stratification of silicate-rich chondrules and more metal-rich matrix from a disaggregated boulder. Volume estimates of ponds derived from NEAR Laser Rangefinder profiles are consistent with what can be supplied by boulders. Ponds are also observed to be concentrated in regions of low slope and high elevation, which suggests the presence of a less mobile regolith and thus a contrast in the resistance to seismic shaking between the pond material and the material that makes up the bounding depression. Future tests include shake-table experiments and temperature cycling (fatigue) of ordinary chondrites to test the thermal erosion mechanism.  相似文献   
993.
Mercury holds answers to several critical questions regarding the formation and evolution of the terrestrial planets. These questions include the origin of Mercury's anomalously high ratio of metal to silicate and its implications for planetary accretion processes, the nature of Mercury's geological evolution and interior cooling history, the mechanism of global magnetic field generation, the state of Mercury's core, and the processes controlling volatile species in Mercury's polar deposits, exosphere, and magnetosphere. The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission has been designed to fly by and orbit Mercury to address all of these key questions. After launch by a Delta 2925H-9.5, two flybys of Venus, and two flybys of Mercury, orbit insertion is accomplished at the third Mercury encounter. The instrument payload includes a dual imaging system for wide and narrow fields-of-view, monochrome and color imaging, and stereo; X-ray and combined gamma-ray and neutron spectrometers for surface chemical mapping; a magnetometer; a laser altimeter; a combined ultraviolet–visible and visible-near-infrared spectrometer to survey both exospheric species and surface mineralogy; and an energetic particle and plasma spectrometer to sample charged species in the magnetosphere. During the flybys of Mercury, regions unexplored by Mariner 10 will be seen for the first time, and new data will be gathered on Mercury's exosphere, magnetosphere, and surface composition. During the orbital phase of the mission, one Earth year in duration, MESSENGER will complete global mapping and the detailed characterization of the exosphere, magnetosphere, surface, and interior.  相似文献   
994.
The Phoenix Deep Survey is an ongoing multi-wavelength survey of a 2° diameter field aimed at studying the properties of the sub-mJy and μJy radio population. Here, we present the latest 1.4 GHz observations of this field. The new data, reaching a 5 σ flux level of 45 μJy at the centre of a 50′ diameter field, comprise more than 700 sources with flux densities less than 1 mJy (187 of which have S1.4 < 100 μJy). This provides one of the deepest radio (1.4 GHz) surveys currently available. The 1.4 GHz source counts are presented and show a flattening down to the 50 μJy level. At flux densities around 300 μJy there are indications that the sources detected may exhibit higher clustering than those observed at higher flux levels. This suggests that deep radio surveys could be useful for studies of large-scale structure but it also presents a warning for the representativity of sources in deep pencil-beam radio surveys. The study of the optical counterparts of the μJy population seems to indicate that the median R magnitude starts to decrease below 100 μJy. Spectroscopic classification of a sample of sources in this survey confirms the trend for an increasing fraction of star-forming galaxies over other systems down to ~ 100 μJy.  相似文献   
995.
The Huygens probe landed on the then unknown surface of Titan in January 2005. A small, protruding penetrometer, part of the Surface Science Package (SSP), was pushed into the surface material measuring the mechanical resistance of the ground as the probe impacted the landing site. We present laboratory penetrometry into room temperature surface analogue materials using a replica penetrometer to investigate further the nature of Titan’s surface and examine the sensor’s capabilities. The results are then compared to the flight instrument’s signature and suggest the Titan surface substrate material consists of sand-sized particles with a mean grain size ~2 mm. A possible thin 7 mm coating with mechanical properties similar to terrestrial snow may overlie this substrate, although due to the limited data we are unable to detect any further layering or grading within the near-surface material. The unusual weakening with depth of the signature returned from Titan has, to date, only been reproduced using a damp sand target that becomes progressively wetter with depth, and supports the suggestion that the surface may consist of a damp and cohesive material with interstitial liquid contained between its grains. Comparison with terrestrial analogues highlights the unusual nature of the landing site material.  相似文献   
996.
Abstract— Seismic reflection data and an at least 350 m thick, PGE‐rich carbonate breccia lens intersected by the Fohn‐1 exploration well in the Timor Sea off northern Australia, are interpreted in terms of a buried 4.8 km‐diameter impact crater of late Eocene to pre‐Miocene age. The crater displays the classic elements of impact structures, including a central uplift, ring syncline, and upraised rims. The presence in the breccia of redeposited Campanian and Maastrichtian microfossils suggests rebound of strata from levels deeper than 1250 m below the pre‐Miocene unconformity. Morphometric modelling suggests an original crater at least 1400 m deep, which is consistent with the excavation of Cretaceous strata. Stratigraphic and palaeontological evidence suggests that the impact occurred between 36 and 24.6 Ma. The breccia contains a pseudotachylite component enriched in the inert Pt group elements (PGE) (Ir, Ru) by factors of 5–12 above the values of common sediments. The more mobile PGE (Os, Pt, Pd) show a wide scatter and terrestrial‐type values. Opposite geochemical/stratigraphic trends pertain to different PGE species—the relatively inert Ir‐Ru group shows an overall concentration at the base of the section, whereas the more mobile Os shows peaks at median levels of the section—suggesting upward diagenetic leaching. The near‐chondritic PGE patterns at the base of the breccia pile are accompanied by near‐chondritic Ni/Cr, Co/Cr, Ni/Ir, Ni/Pt, and Cu/Pd ratios. Departure from these values related to alteration at higher levels in the breccia pile is accompanied with high S levels (~1%).  相似文献   
997.
A potentiostat was used to study the electrolytic corrosion of iron meteorites in a neutral solution. Low current densities were chosen so that the observed potentials would more closely approximate the theoretical Nernst values. Iron, nickel, and cobalt ions, the products of corrosion, were soluble in the electrolyte solution, and were determined after each electrolysis by atomic absorption spectrophotometry. Kamacite and taenite dissolved as individual phases, with kamacite dissolving preferentially. Cobalt dissolved along with iron and nickel from each phase. There is a direct relationship between nickel content and the potential at which a meteorite first starts to dissolve; the higher the nickel content, the more resistant the meteorite is to corrosion. None of the six meteorites observed started to dissolve at a lower potential than pure iron, nor at a higher potential than pure nickel  相似文献   
998.
This review is intended to summarize the current observations of reduced carbon in Martian meteorites, differentiating between terrestrial contamination and carbon that is indigenous to Mars. Indeed, the identification of Martian organic matter is among the highest priority targets for robotic spacecraft missions in the next decade, including the Mars Science Laboratory and Mars 2020. Organic carbon compounds are essential building blocks of terrestrial life, so the occurrence and origin (biotic or abiotic) of organic compounds on Mars is of great significance; however, not all forms of reduced carbon are conducive to biological systems. This paper discusses the significance of reduced organic carbon (including methane) in Martian geological and astrobiological systems. Specifically, it summarizes current thinking on the nature, sources, and sinks of Martian organic carbon, a key component to Martian habitability. Based on this compilation, reduced organic carbon on Mars, including detections of methane in the Martian atmosphere, is best described through a combination of abiotic organic synthesis on Mars and infall of extraterrestrial carbonaceous material. Although conclusive signs of Martian life have yet to be revealed, we have developed a strategy for life detection on Mars that can be utilized in future life‐detection studies.  相似文献   
999.
Abstract— New occurrences of the Acraman impact ejecta layer were recently discovered in two South Australian drillholes, SCYW‐79 1a (Stuart Shelf) and Munta 1 (Officer Basin) using lithostratigraphy, acritarch biostratigraphy, carbon isotope stratigraphy, and biomarker anomalies to predict the stratigraphic position. The ejecta layer is conspicuous because it consists of pink, sandsized, angular fragments of volcanic rock distributed along the bedding plane surface of green marine siltstone. In SCYW‐79 1a it forms a layer 5 mm thick; in Munta 1 the ejecta layer is thin and discontinuous because of its distance (?550 km) from the impact structure. Palynological, biomarker, and carbon isotope anomalies can now be shown to coincide with the ejecta layer in SCYW‐79 1a and Munta 1 suggesting the Acraman impact event may have had far reaching influences on the rapidly evolving Ediacaran biological and geochemical cycles.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号