首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2586篇
  免费   119篇
  国内免费   33篇
测绘学   88篇
大气科学   289篇
地球物理   657篇
地质学   805篇
海洋学   214篇
天文学   356篇
综合类   6篇
自然地理   323篇
  2022年   13篇
  2021年   50篇
  2020年   59篇
  2019年   54篇
  2018年   66篇
  2017年   80篇
  2016年   108篇
  2015年   88篇
  2014年   97篇
  2013年   193篇
  2012年   117篇
  2011年   156篇
  2010年   119篇
  2009年   140篇
  2008年   141篇
  2007年   139篇
  2006年   132篇
  2005年   108篇
  2004年   91篇
  2003年   92篇
  2002年   82篇
  2001年   52篇
  2000年   56篇
  1999年   38篇
  1998年   34篇
  1997年   30篇
  1996年   28篇
  1995年   30篇
  1994年   18篇
  1993年   19篇
  1992年   13篇
  1991年   18篇
  1990年   15篇
  1989年   29篇
  1988年   11篇
  1987年   21篇
  1986年   11篇
  1985年   22篇
  1984年   15篇
  1983年   18篇
  1982年   13篇
  1981年   20篇
  1980年   12篇
  1979年   14篇
  1978年   9篇
  1977年   8篇
  1976年   8篇
  1975年   7篇
  1974年   8篇
  1973年   6篇
排序方式: 共有2738条查询结果,搜索用时 15 毫秒
61.
62.
The baroclinic stability of Jupiter's zonal flow is investigated using a model consisting of two continuously stratified fluid layers. The upper layer, containing a zonal shear flow and representing the Jovian cloudy regions above p ~ 5 bars, is the same as Eady's (1949) model for the Earth. The lower layer has a relatively large but finite depth with a quiescent basic state, representing the deep Jovian fluid bulk below p ~ 5 bars. Due to the presence of the lower layer, the linearized non-dimensional growth rates are drastically reduced from the O(1) growth rates of the original Early model. Only very long wavelengths relative to the upper fluid's radius of deformation L1 are unstable. Eddy transports of heat are also reduced relative to estimates based on scaling arguments alone. Since the hydrostatic approximation for the lower-layer perturbation breaks down at great depths, a second model is presented in which energy propagates downward in an infinitely deep lower fluid obeying the full linearized fluid equations. In this model, the growth rates are again very small, but now all wavelengths are unstable with maximum growth rates occurring for wavelengths O(1) relative to L1. These results illustrate the importance for the upper-layer meteorology of the interface boundary condition with the lower fluid, which is radically different from the rigid lower boundary of the Earth's troposphere.  相似文献   
63.
NASA's Genesis mission revealed that the Sun is enriched in 16O compared to the Earth and Mars (the Sun's Δ17O, defined as δ17O–0.52×δ18O, is –28.4 ± 3.6‰; McKeegan et al. 2011). Materials as 16O‐rich as the Sun are extremely rare in the meteorite record. Here, we describe a Ca‐Al‐rich inclusion (CAI) from a CM chondrite that is as 16O‐enriched as the Sun (Δ17O = –29.1 ± 0.7‰). This CAI also has large nucleosynthetic anomalies in 48Ca and 50Ti (δ‐values are –8.1 ± 3.3 and –11.7 ± 2.4‰, respectively) and shows no clear evidence for incorporation of live 26Al; (26Al/27Al)0 = (0.03 ± 0.11) × 10–5. Due to their anomalous isotopic characteristics, the rare CAIs consistent with the Genesis value could be among the first materials that formed in the solar system. In contrast to the CAI studied here, the majority of CAIs formed in or interacted with a reservoir characterized by a Δ17O value near –23.5‰. Combined with 26Al‐26Mg systematics, the oxygen isotopic compositions of FUN (fractionation and unidentified nuclear effects), UN, and normal CAIs suggest that nebular conditions were favorable for solids to inherit this value for an extended period of time. Many later‐formed materials, such as chondrules, planetesimals, and terrestrial planets, formed in reservoirs with Δ17O near 0‰. The distribution could be easier to explain if the common CAI value of –23.5‰, which is consistent with the Genesis value within 3σ, represented the average composition of the protoplanetary disk.  相似文献   
64.
The Martian meteorites comprise mantle‐derived mafic to ultramafic rocks that formed in shallow intrusions and/or lava flows. This study reports the first in situ platinum‐group element data on chromite and ulvöspinel from a series of dunitic chassignites and olivine‐phyric shergottites, determined using laser‐ablation ICP‐MS. As recent studies have shown that Ru has strongly contrasting affinities for coexisting sulfide and spinel phases, the precise in situ analysis of this element in spinel can provide important insights into the sulfide saturation history of Martian mantle‐derived melts. The new data reveal distinctive differences between the two meteorite groups. Chromite from the chassignites Northwest Africa 2737 (NWA 2737) and Chassigny contained detectable concentrations of Ru (up to ~160 ppb Ru) in solid solution, whereas chromite and ulvöspinel from the olivine‐phyric shergottites Yamato‐980459 (Y‐980459), Tissint, and Dhofar 019 displayed Ru concentrations consistently below detection limit (<42 ppb). The relatively elevated Ru signatures of chromite from the chassignites suggest a Ru‐rich (~1–4 ppb) parental melt for this meteorite group, which presumably did not experience segregation of immiscible sulfide liquids over the interval of mantle melting, melt ascent, and chromite crystallization. The relatively Ru‐depleted signature of chromite and ulvöspinel from the olivine‐phyric shergottites may be the consequence of relatively lower Ru contents (<1 ppb) in the parental melts, and/or the presence of sulfides during the crystallization of the spinel phases. The results of this study illustrate the significance of platinum‐group element in situ analysis on spinel phases to decipher the sulfide saturation history of magmatic systems.  相似文献   
65.
The outcomes of asteroid collisional evolution are presently unclear: are most asteroids larger than 1 km size gravitational aggregates reaccreted from fragments of a parent body that was collisionally disrupted, while much smaller asteroids are collisional shards that were never completely disrupted? The 16 km mean diameter S-type asteroid 433 Eros, visited by the NEAR mission, has surface geology consistent with being a fractured shard. A ubiquitous fabric of linear structural features is found on the surface of Eros and probably indicates a globally consolidated structure beneath its regolith cover. Despite the differences in absolute scale and in lighting conditions for NEAR and Hayabusa, similar features should have been found on 25143 Itokawa if present. This much smaller, 320 m diameter S-asteroid was visited by the Hayabusa spacecraft. Comparative analyses of Itokawa and Eros geology reveal fundamental differences, and interpretation of Eros geology is illuminated by comparison with Itokawa. Itokawa lacks a global lineament fabric, and its blocks, craters, and regolith may be inconsistent with formation and evolution as a fractured shard, unlike Eros. An object as small as Itokawa can form as a rubble pile, while much larger Eros formed as a fractured shard. Itokawa is not a scaled-down Eros, but formed by catastrophic disruption and reaccumulation.  相似文献   
66.
Possible interrelationships of different observations have been studied to clear up some obvious inconsistencies and develop a coherent picture of the kinematics of the Venus atmosphere. There is a wind shear in the vicinity of 60 km with vertical dimensions on the order of a scale height. The kinematical model has negligible surface winds, speeds increasing with altitude to approximately 45 km, a layer of high-speed retrograde zonal winds extending from approximately 45 to 60 km, a wind shear between 60 and 65 km, and slow atmospheric motions above this. Spacecraft data show that the region of high-speed winds is thicker on the day side of the planet than on the night side.  相似文献   
67.
The space weathering process and its implications for the relationships between S- and Q-type asteroids and ordinary chondrite meteorites is an often debated topic in asteroid science. Q-type asteroids have been shown to display the best spectral match to ordinary chondrites (McFadden, L.A., Gaffey, M.J., McCord, T.B. [1985]. Science 229, 160–163). While the Q-types and ordinary chondrites share some spectral features with S-type asteroids, the S-types have significantly redder spectral slopes than the Q-types in visible and near-infrared wavelengths. This reddening of spectral slope is attributed to the effects of space weathering on the observed surface composition. The analysis by Binzel et al. (Binzel, R.P., Rivkin, A.S., Stuart, J.S., Harris, A.W., Bus, S.J., Burbine, T.H. [2004]. Icarus 170, 259–294) provided a missing link between the Q- and S-type bodies in near-Earth space by showing a reddening of spectral slope in objects from 0.1 to 5 km that corresponded to a transition from Q-type to S-type asteroid spectra, implying that size, and therefore surface age, is related to the relationship between S- and Q-types. The existence of Q-type asteroids in the main-belt was not confirmed until Mothé-Diniz and Nesvorny (Mothé-Diniz, T., Nesvorny, D. [2008]. Astron. Astrophys. 486, L9–L12) found them in young S-type clusters. The young age of these families suggest that the unweathered surface could date to the formation of the family. This leads to the question of whether older S-type main-belt families can contain Q-type objects and display evidence of a transition from Q- to S-type. To answer this question we have carried out a photometric survey of the Koronis family using the Kitt Peak 2.1 m telescope. This provides a unique opportunity to compare the effects of the space weathering process on potentially ordinary chondrite-like bodies within a population of identical initial conditions. We find a trend in spectral slope for objects 1–5 km that shows the transition from Q- to S-type in the main-belt. This data set will prove crucial to our understanding of the space weathering process and its relevant timescales.  相似文献   
68.
Galactic cosmic rays consist of primary and secondary particles. Primary cosmic rays are thought to be energized by first order Fermi acceleration processes at supernova shock fronts within our Galaxy. The cosmic rays that eventually reach the Earth from this source are mainly protons and atomic nuclei, but also include electrons. Secondary cosmic rays are created in collisions of primary particles with the diffuse interstellar gas. They are relatively rare but carry important information on the Galactic propagation of the primary particles. The secondary component includes a small fraction of antimatter particles, positrons and antiprotons. In addition, positrons and antiprotons may also come from unusual sources and possibly provide insight into new physics. For instance, the annihilation of heavy supersymmetric dark matter particles within the Galactic halo could lead to positrons or antiprotons with distinctive energy signatures. With the High-Energy Antimatter Telescope (HEAT) balloon-borne instrument, we have measured the abundances of positrons and electrons at energies between 1 and 50 GeV. The data suggest that indeed a small additional antimatter component may be present that cannot be explained by a purely secondary production mechanism. Here we describe the signature of the effect and discuss its possible origin.  相似文献   
69.
This paper presents a new generalized effective stress model, referred to as MIT-S1, which is capable of predicting the rate independent, effective stress–strain–strength behaviour of uncemented soils over a wide range of confining pressures and densities. Freshly deposited sand specimens compressed from different initial formation densities approach a unique condition at high stress levels, referred to as the limiting compression curve (LCC), which is linear in a double logarithmic void ratio, e, mean effective stress space, p′. The model describes irrecoverable, plastic strains which develop throughout first loading using a simple four-parameter elasto-plastic model. The shear stiffness and strength properties of sands in the LCC regime can be normalized by the effective confining pressure and hence can be unified qualitatively, with the well-known behaviour of clays that are normally consolidated from a slurry condition along the virgin consolidation line (VCL). At lower confining pressures, the model characterizes the effects of formation density and fabric on the shear behaviour of sands through a number of key features: (a) void ratio is treated as a separate state variable in the incrementally linearized elasto-plastic formulation: (b) kinematic hardening describing the evolution of anisotropic stress–strain properties: (c) an aperture hardening function controls dilation as a function of ‘formation density’; and (d) the use of a single lemniscate-shaped yield surface with non-associated flow. These features enable the model to describe characteristic transitions from dilative to contractive shear response of sands as the confining pressure increases. This paper summarizes the procedures used to select input parameters for clays and sands, while a companion paper compares model predictions with measured data to illustrate the model capability for describing the shear behaviour of clays and sands. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号