首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24730篇
  免费   196篇
  国内免费   919篇
测绘学   1418篇
大气科学   1995篇
地球物理   4616篇
地质学   11693篇
海洋学   1038篇
天文学   1682篇
综合类   2161篇
自然地理   1242篇
  2022年   1篇
  2021年   8篇
  2020年   7篇
  2019年   5篇
  2018年   4771篇
  2017年   4046篇
  2016年   2588篇
  2015年   250篇
  2014年   95篇
  2013年   44篇
  2012年   1007篇
  2011年   2747篇
  2010年   2032篇
  2009年   2331篇
  2008年   1905篇
  2007年   2372篇
  2006年   74篇
  2005年   205篇
  2004年   419篇
  2003年   422篇
  2002年   260篇
  2001年   59篇
  2000年   57篇
  1999年   17篇
  1998年   27篇
  1997年   9篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   5篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1984年   1篇
  1983年   1篇
  1981年   22篇
  1980年   20篇
  1977年   2篇
  1976年   6篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1969年   2篇
  1941年   1篇
  1940年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Pulsatory characteristics of wind velocity in sand flow over Gobi and mobile sand surface have been investigated experimentally in the wind tunnel. The primary goal of this paper is to reveal the relation- ship between pulsatory characteristics of instantaneous wind speed in sand flow and the motion state of sand grains. For a given underlying surface, pulsation of wind velocities in sand flow on different heights has a good correlation. As the space distance among different heights increases, fluctuation of instantaneous wind speed presents a decreasing trend and its amplitude is closely related to the mo- tion state of sand grains and their transport. Pulsatory intensity increases with the indicated wind speed, but its relative value does not depend on it, only agrees with height.  相似文献   
92.
The Tarwal River basin with an area of 6560.20 km2 is located in the eastern part of Iranian Kurdistan Province. This river crosses the Qorveh and Dehgolan plains and joins the Ghezel Ozan River in Zanjan Province. The importance of this river as a source for drinking water and agricultural and industrial uses in the region necessitates the need for research in this field. The main purpose of this study is to identify the natural features of the riverbed from the perspective of river geomorphology and to investigate their impact on water quality and river self-purification capacity. To achieve this, the river style framework was employed. To investigate the effects of each style framework on the river, a total of 20 samples from the entrance and outlet of styles were obtained using Impact Assessment method and sampling standards which were later analyzed for their quality parameters including T, pH, EC, TDS, TSS, Na, Ca, Mg, K, Cl, F, NO2, NO3, SO4, PO4, DO, COD and BOD. The results indicated that the changes in the styles lead to changes in water quality and the impact of each style is greater on the physical parameters than the chemical parameters. The river self-purification capacity varied depending on the style. The maximum and the minimum self-purifications occurred in fine-grained Anabranching and low-sinuosity fine-grained styles, respectively.  相似文献   
93.
The viability of a complete structural characterization of civil structures is explored and discussed. In particular, the identification of modal (i.e. natural frequencies, damping ratios and modal shapes) and physical properties (i.e. mass and stiffness) using only the structure’s free decay response is studied. To accomplish this, modal analysis from free vibration response only (MAFVRO) and mass modification (MM) methodologies are engaged along with Wavelet based techniques for optimal signal processing and modal reconstruction. The methodologies are evaluated using simulated and experimental data. The simulated data are extracted from a simple elastic model of a 5 story shear building and from a more realistic nonlinear model of a RC frame structure. The experimental data are gathered from shake table test of a 2-story scaled shear building. Guidelines for the reconstruction procedure from the data are proposed as the quality of the identified properties is shown to be governed by adequate selection of the frequency bands and optimal modal shape reconstruction. Moreover, in cases where the structure has undergone damage, the proposed identification scheme can also be applied for preliminary assessment of structural health.  相似文献   
94.
Aerial photographs taken in 1978 and 1987, Landsat TM images in 1998 as well as soil, hydrology and socio-economic data for the oases in Sangong River Watershed were processed by Remote Sensing (RS) and Geographic Information System (GIS). There are two typical agricultural land uses in oases, Farm-based Land Use with large-scale intensified agricultural activities (FLU) and Household Responsibility-based Land Use with small-scale activities (HRLU). The Index Model of Land Use/Land Cover Change (LUCC), Weighted Index Sum (WIS) and logistic stepwise regression model were established to contrast the two typical LUCC processes and their driving forces. The land use patterns were dominated by cropland and grassland for the entire region, and cropland, residential and industrial land were increasing stably. In the HRLU areas, woodland and grassland declined dramatically, but in the FLU areas, grassland decreased only by 12.0%, whereas woodland increased by 13.7%. LUCC was stronger in the earlier stage (1978–1987) than in the later stage (1987–1998) for the entire region. LUCC was more intense in the HRLU areas than in the FLU areas during the entire period (1978–1998). Policy was a key factor in the land use change, and water resources were a precondition in land use. Under the control of policy and water resources, the main human driving factors included population and economy, and the main natural restrictions were soil fertility and groundwater depth. Human driving factors controlled the land change in the HRLU areas, but natural restriction factors dominated in the FLU areas. In the mean time, intensification of LUCC in the region had some spatiotemporal implications with a fluctuation of impact factors.  相似文献   
95.
Remote sensing data have been widely applied to extract minerals in geologic exploration, however, in areas covered by vegetation, extracted mineral information has mostly been small targets bearing little information. In this paper, we present a new method for mineral extraction aimed at solving the difficulty of mineral identification in vegetation covered areas. The method selected six sets of spectral difference coupling between soil and plant (SVSCD). These sets have the same vegetation spectra reflectance and a maximum different reflectance of soil and mineral spectra from Hyperion image based on spectral reflectance characteristics of measured spectra. The central wavelengths of the six, selected band pairs were 2314 and 701 nm, 1699 and 721 nm, 1336 and 742 nm, 2203 and 681 nm, 2183 and 671 nm, and 2072 and 548 nm. Each data set’s reflectance was used to calculate the difference value. After band difference calculation, vegetation information was suppressed and mineral abnormal information was enhanced compared to the scatter plot of original band. Six spectral difference couplings, after vegetation inhibition, were arranged in a new data set that requires two components that have the largest eigenvalue difference from principal component analysis (PCA). The spatial geometric structure features of PC1 and PC2 was used to identify altered minerals by spectral feature fitting (SFF). The collecting rocks from the 10 points that were selected in the concentration of mineral extraction were analyzed under a high-resolution microscope to identify metal minerals and nonmetallic minerals. Results indicated that the extracted minerals were well matched with the verified samples, especially with the sample 2, 4, 5 and 8. It demonstrated that the method can effectively detect altered minerals in vegetation covered area in Hyperion image.  相似文献   
96.
A spectral-tensor model of non-neutral, atmospheric-boundary-layer turbulence is evaluated using Eulerian statistics from single-point measurements of the wind speed and temperature at heights up to 100 m, assuming constant vertical gradients of mean wind speed and temperature. The model has been previously described in terms of the dissipation rate \(\epsilon \), the length scale of energy-containing eddies \(\mathcal {L}\), a turbulence anisotropy parameter \(\varGamma \), the Richardson number Ri, and the normalized rate of destruction of temperature variance \(\eta _\theta \equiv \epsilon _\theta /\epsilon \). Here, the latter two parameters are collapsed into a single atmospheric stability parameter z / L using Monin–Obukhov similarity theory, where z is the height above the Earth’s surface, and L is the Obukhov length corresponding to \(\{Ri,\eta _\theta \}\). Model outputs of the one-dimensional velocity spectra, as well as cospectra of the streamwise and/or vertical velocity components, and/or temperature, and cross-spectra for the spatial separation of all three velocity components and temperature, are compared with measurements. As a function of the four model parameters, spectra and cospectra are reproduced quite well, but horizontal temperature fluxes are slightly underestimated in stable conditions. In moderately unstable stratification, our model reproduces spectra only up to a scale \(\sim \) 1 km. The model also overestimates coherences for vertical separations, but is less severe in unstable than in stable cases.  相似文献   
97.
This paper presents an analysis of the slope failure of a Suvarnabhumi drainage canal during construction. The Suvarnabhumi drainage canal project includes a large drainage canal with a road on both sides. The width of the bottom of the drainage canal is 48.0 m, the depth of the drainage canal is 3.0 m, and the length of the drainage canal is 10.5 km. Because the project was constructed on very soft Bangkok clay, deep cement mixing (DCM) columns were employed to increase the stability of the excavated canal. The failure of the drainage canal slope occurred 25 days after the end of excavation. The field monitoring data show that lateral movement of the canal slope continuously increased with time, which caused failure due to the instability of the canal slope. The time-dependent deformation and undrained creep behavior of very soft clay was suspected to be the cause of the canal failure. A laboratory investigation of undrained creep behavior and a finite element analysis (FEA) using the soft soil creep (SSC) model were performed to confirm the causes of the canal failure. The results indicate that very soft clay specimens that are subjected to deviator creep stress levels of 70 and 100 % of the peak strength failed by creep rupture within 60 days and 8 min, respectively. The factor of safety for the canal slope, which was obtained from the FEA, shows significant reduction from the initial value of 1.710 to 1.045 within 24 days after the end of excavation due to the effect of undrained creep. This paper also describes a solution method that is applied to a new section of the canal. Field monitoring and an FEA of the new trial section were performed to prove the effectiveness of the solution method.  相似文献   
98.
99.
This article briefly reviews our current understanding of the evolution of magnetic fields in neutron stars, which basically defines the evolutionary pathways between different observational classes of neutron stars. The emphasis here is on the evolution in binary systems and the newly emergent classes of millisecond pulsars.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号